Abstract:
A vehicle powertrain includes a first rotatable member and a second rotatable member. A clutch has an engaged state in which torque is transferred between the first rotatable member and the second rotatable member through the clutch. The clutch has a disengaged state in which torque is not transferred between the first rotatable member and the second rotatable member through the clutch. A clutch actuator includes a motor-generator that has a rotor rotatably drivable by one of the first rotatable member and the second rotatable member, and has a stator powerable to rotatably drive the rotor relative to said one of the first rotatable member and the second rotatable member. A controller is operatively connected to the stator and is configured to control the motor-generator to function as a generator to provide torque on the rotor. The motor-generator provides electrical power to a vehicle component.
Abstract:
A torque transmitting mechanism includes a drum attached to one of a first member and a second member, and a shell attached to another of the first member and the second member. The drum and the shell are concentrically disposed about a longitudinal axis, with the shell concentrically disposed about the drum. An electric motor includes a stator, and a first rotor rotatable about the longitudinal axis relative to the stator. A band is coupled to the shell, wrapped around the drum between four and twelve complete revolutions, and includes a first end attached to the first rotor for rotation with the first rotor. The band includes a second end attached to a reaction member. Rotation of the first rotor tightens the band against the drum to bias the drum against the shell, to transmit torque between the first member and the second member.
Abstract:
An anti-icing coating having a continuous phase and a discrete phase. The continuous phase includes a fluorine-containing polymer formed from a fluorine-containing precursor having a functionality of greater than 2. The discrete phase includes a plurality of domains having a fluorine-free hygroscopic and/or hydrophilic material. The plurality of domains are dispersed within the continuous phase and are immersible with the continuous phase. At least a portion of the fluorine-free material is bonded to the fluorine-containing polymer with an isocyanate-containing moiety. The fluorine-containing polymer is crosslinked with a crosslinking molecule having at least 4 functional groups. The fluorine-free material is a poly(ethylene glycol).
Abstract:
A shield assembly is employed for a friction brake used to decelerate a road wheel of a vehicle. The vehicle has a body with a first body end configured to face an incident ambient airflow, a second body end opposite of the first body end, and an underbody section spanning a distance between the first and second ends. The shield assembly includes a first shield component arranged proximate the brake and rotationally fixed relative to the vehicle body. The shield assembly also includes a second shield component operatively connected to the first shield component for shifting relative thereto. The shield assembly additionally includes an actuator employing a shape memory alloy element to shift the second shield component relative to the first shield component in response to a temperature of the brake to thereby direct at least a portion of the airflow to the brake and control temperature thereof.
Abstract:
An aqueous or water-borne precursor for forming an anti-fouling heterophasic thermoset polymeric coating is provided. The precursor includes a fluorine-containing polyol precursor having a functionality >about 2 that forms a branched fluorine-containing polymer component defining a continuous phase in the anti-fouling heterophasic thermoset polymeric coating. The precursor also includes a fluorine-free precursor that forms a fluorine-free component present as a plurality of domains each having an average size of ≥about 100 nm to ≤about 5,000 nm defining a discrete phase within the continuous phase in the anti-fouling heterophasic thermoset polymeric coating. A crosslinking agent and water are also present. An emulsifier may also be included. Methods of making anti-fouling heterophasic thermoset polymeric coatings with such precursors are also provided.
Abstract:
A smart trailer coupler system includes a ball mount connectable to a vehicle, a hitch ball mechanically connected to the ball mount, a coupler selectively connectable to the hitch ball, and at least one sensor mounted to one of the ball mount, the hitch ball and the coupler. The at least one sensor detects a size compatibility between the coupler and the hitch ball. A signal system is operatively connected to the at least one sensor. The signal system provides at least one of a visual alert and an audible alert of the size compatibility between the hitch ball and the coupler.
Abstract:
A powertrain for a hybrid vehicle includes a clutch interconnecting an internal combustion engine and an electric motor. The electric motor is coupled to a manually operated gearbox operable in at least one electric only drive position and at least one hybrid drive position. A latch is coupled to the clutch and is moveable between a closed position inhibiting the clutch from interconnecting the internal combustion engine and the electric motor when the gearbox is disposed in the electric only drive position, and an open position allowing the clutch to interconnect the internal combustion engine and the electric motor when the gearbox is disposed in the hybrid drive position.
Abstract:
A method of and attachment system for securing and manipulating attractive objects upon an interior vehicular surface, utilizing at least one coded magnet to selectively attach/retain the objects, and provide various other functions, including aiding in alignment, orientation, and retrieval of the objects, and activating an associated sub-system.
Abstract:
An automated recharging system includes an electric vehicle and a charging apparatus. The electric vehicle includes a rechargeable energy storage system (RESS), a charging receptacle, and a first controller configured to monitor the status of the electric vehicle and the charge level of the RESS. The charging apparatus includes a charging plug configured to mate with the charging receptacle to recharge the RESS, and a movement mechanism to substantially align the charging plug with and insert it into the charging receptacle. The charging apparatus also includes a second controller to control the movement mechanism and to communicate with the first controller. The electric vehicle further includes an array of radio-frequency identification (RFID) tags arranged around the charging receptacle, and the charging apparatus further includes a RFID reader configured to read the RFID tags to determine the location of the charging plug in relation to the charging receptacle.
Abstract:
A powertrain for a hybrid vehicle includes a clutch interconnecting an internal combustion engine and an electric motor. The electric motor is coupled to a manually operated gearbox operable in at least one electric only drive position and at least one hybrid drive position. A latch is coupled to the clutch and is moveable between a closed position inhibiting the clutch from interconnecting the internal combustion engine and the electric motor when the gearbox is disposed in the electric only drive position, and an open position allowing the clutch to interconnect the internal combustion engine and the electric motor when the gearbox is disposed in the hybrid drive position.