Abstract:
An aqueous or water-borne precursor for forming an anti-fouling heterophasic thermoset polymeric coating is provided. The precursor includes a fluorine-containing polyol precursor having a functionality greater than about 2 that forms a branched fluorine-containing polymer component defining a continuous phase in the anti-fouling heterophasic thermoset polymeric coating. The precursor also includes a fluorine-free precursor that forms a fluorine-free component present as a plurality of domains each having an average size of greater than or equal about 100 nm to less than or equal about 5,000 nm defining a discrete phase within the continuous phase in the anti-fouling heterophasic thermoset polymeric coating. A crosslinking agent and water are also present. An emulsifier may also be included. Methods of making anti-fouling heterophasic thermoset polymeric coatings with such precursors are also provided.
Abstract:
A composition with latent adhesion, fuel cell stack with a bipolar plate assembly with latent adhesion and a method of assembling a fuel cell stack with a seal that has latent adhesion such that reactant or coolant leakage through the seal is reduced. Bipolar plates within the stack include reactant channels and coolant channels that are fluidly coupled to inlet and outlet flowpaths, all of which are formed within a coolant-engaging or reactant-engaging surface of the plate. One or more thin or low aspect-ratio seals are formed on a metal bead that is integrally-formed on a surface of the plate and is used to help reduce leakage by maintaining fluid isolation of the reactants and coolant as they flow through their respective channels and flowpaths that are defined between adjacently-placed plates. By proper formulation of the precursor materials that make up the seal, the activation of the adhesive bond formed between the seal and an adjacent surface within the fuel cell can be delayed to allow ample time to aligned and compressively join the cell assemblies in a stack housing. This in turn improves the ability of the seal and its adjacent surface to avoid seal damage and concomitant reactant or coolant leakage.
Abstract:
A sealed assembly is made using sealant including a deformable spacer to control thickness without adversely impacting elasticity and sealing force. Deformable spacers (e.g., elastomer, polyolefin, etc.) are mixed with an elastomeric precursor material and dispensed onto an assembly component, such as a fuel cell bipolar plate, and the remaining component(s) are assembled by pressing against the deformable spacer to ensure a defined seal thickness. The precursor is cured to form a seal that is further compressed to provide an effective sealing force. The deformable spacers control the thickness of a sealed area and allow use of form-in-place sealing processes.
Abstract:
A polyurethane foam and a method of forming a polyurethan foam. The polyurethane foam including the reaction product of polyethylene glycol and polypropylene copolymer polyol, a gelation catalyst, a blowing catalyst, lignin, a polymeric isocyanate, and a blowing agent. The method includes mixing polyethylene glycol and polypropylene copolymer polyol, a gelation catalyst, a blowing catalyst, lignin, a polymeric isocyanate, and a blowing agent. Vehicle components are formed from the polyurethane foam.
Abstract:
A sealed assembly is made using sealant including a deformable spacer to control thickness without adversely impacting elasticity and sealing force. Deformable spacers (e.g., elastomer, polyolefin, etc.) are mixed with an elastomeric precursor material and dispensed onto an assembly component, such as a fuel cell bipolar plate, and the remaining component(s) are assembled by pressing against the deformable spacer to ensure a defined seal thickness. The precursor is cured to form a seal that is further compressed to provide an effective sealing force. The deformable spacers control the thickness of a sealed area and allow use of form-in-place sealing processes.
Abstract:
A polyurethane foam and a method of forming a polyurethan foam. The polyurethane foam including the reaction product of polyethylene glycol and polypropylene copolymer polyol, a gelation catalyst, a blowing catalyst, lignin, a polymeric isocyanate, and a blowing agent. The method includes mixing polyethylene glycol and polypropylene copolymer polyol, a gelation catalyst, a blowing catalyst, lignin, a polymeric isocyanate, and a blowing agent. Vehicle components are formed from the polyurethane foam.
Abstract:
A composition with latent adhesion, fuel cell stack with a bipolar plate assembly with latent adhesion and a method of assembling a fuel cell stack with a seal that has latent adhesion such that reactant or coolant leakage through the seal is reduced. Bipolar plates within the stack include reactant channels and coolant channels that are fluidly coupled to inlet and outlet flowpaths, all of which are formed within a coolant-engaging or reactant-engaging surface of the plate. One or more thin or low aspect-ratio seals are formed on a metal bead that is integrally formed on a surface of the plate and is used to help reduce leakage by maintaining fluid isolation of the reactants and coolant as they flow through their respective channels and flowpaths that are defined between adjacently placed plates. By proper formulation of the precursor materials that make up the seal, the activation of the adhesive bond formed between the seal and an adjacent surface within the fuel cell can be delayed to allow ample time to aligned and compressively join the cell assemblies in a stack housing. This in turn improves the ability of the seal and its adjacent surface to avoid seal damage and concomitant reactant or coolant leakage.
Abstract:
An anti-icing coating having a continuous phase and a discrete phase. The continuous phase includes a fluorine-containing polymer formed from a fluorine-containing precursor having a functionality of greater than 2. The discrete phase includes a plurality of domains having a fluorine-free hygroscopic and/or hydrophilic material. The plurality of domains are dispersed within the continuous phase and are immersible with the continuous phase. At least a portion of the fluorine-free material is bonded to the fluorine-containing polymer with an isocyanate-containing moiety. The fluorine-containing polymer is crosslinked with a crosslinking molecule having at least 4 functional groups. The fluorine-free material is a poly(ethylene glycol).
Abstract:
An aqueous or water-borne precursor for forming an anti-fouling heterophasic thermoset polymeric coating is provided. The precursor includes a fluorine-containing polyol precursor having a functionality >about 2 that forms a branched fluorine-containing polymer component defining a continuous phase in the anti-fouling heterophasic thermoset polymeric coating. The precursor also includes a fluorine-free precursor that forms a fluorine-free component present as a plurality of domains each having an average size of ≥about 100 nm to ≤about 5,000 nm defining a discrete phase within the continuous phase in the anti-fouling heterophasic thermoset polymeric coating. A crosslinking agent and water are also present. An emulsifier may also be included. Methods of making anti-fouling heterophasic thermoset polymeric coatings with such precursors are also provided.