Abstract:
A method and system may manage the driver's attention while driving. The driver may be driving using an autonomous driving system or limited-ability autonomous driving system. A steering wheel device may indicate to the driver a level of required supervisory control of a vehicle. The steering wheel device may include indicators to flash lights, vibrate, or provide other indicators. The indicators may have distinct levels of intensity for each level of supervisory control required to safely control a vehicle.
Abstract:
The present application generally relates to a method and apparatus for driving automation control of a motor vehicle. In particular, the system is operative to determine a vehicle maneuver, such as a lane change, and provide a first kinesthetic cue to a supervisory driver or vehicle occupant indicating the start of a vehicle maneuver. The system and method are then operative to complete the vehicle maneuver and provide a second kinesthetic cue indicating the completion of the vehicle maneuver.
Abstract:
Methods and systems for controlling a driving feature for an automated driving system are provided. In one embodiment, a method includes: receiving a first sensor signal from a first sensor; receiving a second sensor signal from a second sensor; selectively determining a driver intent based on at least one of the first sensor signal and the second sensor signal; and controlling the driving feature based on the driver intent.
Abstract:
A method of alerting a driver of a vehicle is provided. The method includes: receiving conditions data from one or more collision avoidance systems; determining an alert mode based on the conditions data, wherein the alert mode indicates at least two of alert conditions, vehicle conditions, and driving scenarios; and at least one of arbitrating, synchronizing, and combining at least two alert patterns associated with the at least two of the alert conditions, the vehicle conditions, and the driving scenarios and associated with one or more alert devices.
Abstract:
A method and system may manage the driver's attention while driving. The driver may be driving using an autonomous driving system or limited-ability autonomous driving system. A method may detect, by a sensor, characteristics of a driver; determine, based on the detected characteristics of the driver, whether the driver exercises sufficient supervisory control of the vehicle; and provide a series of one or more prompts, wherein each prompt's intrusiveness is related to the determination of whether the driver exercises sufficient supervisory control of the vehicle.
Abstract:
A method of displaying a captured image on a display device of a driven vehicle. A scene exterior of the driven vehicle is captured by an at least one vision-based imaging and at least one sensing device. A time-to-collision is determined for each object detected. A comprehensive time-to-collision is determined for each object as a function of each of the determined time-to-collisions for each object. An image of the captured scene is generated by a processor. The image is dynamically expanded to include sensed objects in the image. Sensed objects are highlighted in the dynamically expanded image. The highlighted objects identifies objects proximate to the driven vehicle that are potential collisions to the driven vehicle. The dynamically expanded image with highlighted objects and associated collective time-to-collisions are displayed for each highlighted object in the display device that is determined as a potential collision.
Abstract:
A method of displaying a captured image on a display device of a driven vehicle. A scene exterior of the driven vehicle is captured by an at least one vision-based imaging device mounted on the driven vehicle. Objects in a vicinity of the driven vehicle are sensed. An image of the captured scene is generated by a processor. The image is dynamically expanded to include sensed objects in the image. The sensed objects are highlighted in the dynamically expanded image. The highlighted objects identify vehicles proximate to the driven vehicle that are potential collisions to the driven vehicle. The dynamically expanded image is displayed with highlighted objects in the display device.
Abstract:
A method of alerting a driver of a vehicle is provided. The method includes: receiving conditions data from one or more collision avoidance systems; selectively coordinating an alert pattern for at least one of a haptic alert device, a visual alert device, and an auditory alert device based on the conditions data; receiving interior vehicle conditions data indicating conditions within the vehicle; and selectively generating infotainment system signals based on the alert pattern and the interior vehicle conditions data.
Abstract:
A driver alert system includes a computer processor disposed in a vehicle. The computer processor is configured to receive driver attention data over a vehicle network during a driving event. The computer processor executes logic to process the driver attention data and evaluate the driver attention data for a triggering event. The system also includes a steering wheel unit disposed in the vehicle and lights that are integrated on a front windshield-facing surface of a steering wheel of the steering wheel unit. The lights are positioned at an angle to reflect light off of a front windshield of the vehicle. The system also includes a controller disposed in the steering wheel unit. The controller is communicatively coupled to the lights and the vehicle network. The controller receives a request from the computer processor to activate the lights when the triggering event has occurred.
Abstract:
A method of alerting a driver of a vehicle is provided. The method includes: receiving conditions data from one or more collision avoidance systems; determining an alert mode based on the conditions data; receiving a fault status indicating a fault of at least one of a haptic alert device, a visual alert device, and an auditory alert device; resetting the alert mode to an override mode based on the fault status; and selectively generating an alert pattern for at least one of a haptic alert device, a visual alert device, and an auditory alert device that does not have a fault based on the override mode of the alert mode.