摘要:
This is an uncooled HgCdTe IR sensor, and method of fabricating an uncooled HgCdTe IR sensor. The method comprises; growing an HgCdTe film on an IR transparent substrate, and shaping the substrate into a lens configuration. The HgCdTe IR sensor can comprise an epitaxial, HgCdTe film on an IR transparent substrate, with the substrate shaped in a lens configuration, creating an intregal, controlled (e.g. wide angle) field of view sensor. Reflections at the interface between the HgCdTe and the lens are substantially reduced, and problems of attaching HgCdTe to the lens are also substantially reduced. Preferably, the HgCdTe film is grown by liquid phase epitaxy, the substrate is CdZnTe or CdTe, and/or the substrate is shaped into a hemisphere or a cylindrical section. In one embodiment, an IR transparent overlayer is grown on an HgCdTe film 10 and the substrate is shaped into a hemisphere lens 16 and the IR transparent overlayer is shaped into an hemispherical lens 18. The HgCdTe film may also have a top surface with a non-uniform compositional gradient, to provide an HgCdTe IR sensor which can detect a wide range of optical wavelengths.
摘要:
Methods of annealing Hg.sub.1-x Cd.sub.x Te slices (56) in a mercury reflux chamber (32, 34) with a mercury reservoir (52) at the bottom and condensation regions at the top (62) is disclosed. The chamber is heated by a furnace (44) that creates an annealing region encompassing both the reservoir and a holder (46) for the Hg.sub.1-x Cd.sub.x Te slices (56). In preferred embodiment methods reservoir (52) is heated to 270.degree. C. for two hours to sixty days. An annealing immediately after LPE growth by use of either mercury vapor from the melt or a separate reservoir is also disclosed.
摘要:
This is a mercury cadmium telluride flame detector which can be operated at room temperature, and a method for making such a detector. It utilizes at least two different compositions of mercury cadmium telluride on a common substrate; and has at least two contact areas on at least one of said mercury cadmium telluride compositions. In one embodiment, the substrate 104 is transparent and an upper mercury cadmium telluride layer 88 is over an insulating layer 89, which insulating layer is over a lower mercury cadmium telluride layer 90 and the lower mercury cadmium telluride is on said substrate, and contact areas 86 are provided on said upper mercury cadmium telluride layer 88, whereby the lower layer 90 filters radiation prior to the radiation reaching the upper layer 88. Preferably the insulating layer is cadmium telluride, the contact areas 86 are mercury telluride, and said upper layer, said insulating layer and said lower layer are epitaxial layers. In another embodiment, the substrate is transparent and different compositions of mercury cadmium telluride are fabricated on a deposition template by liquid phase epitaxial growth where the composition varies with time during said growth of the film and a top portion of said film is lapped at an angle to provide a first lapped surface and a bottom portion of said film and said deposition template are lapped away to provide a second lapped surface substantially parallel to said first lapped surface, and said lapped film is adhered to the substrate and said lapped film is etched to provide said different compositions of mercury cadmium telluride spaced from one another.
摘要:
An electronic circuit interconnection system provides high density mounting of ceramic chip-carrier integrated circuit devices or other beam-lead, dual-in-line (DIP), tape-automated-bonded (TAB), flip-chip, or direct-mounted i.c. devices with wire-bonded interconnects or the like on an economical, dimensionally-stable, interconnection substrate which has high heat dissipating properties. The substrate has glass components which are fused onto etched metal patterns and which are proportioned relative to the metal patterns so that the heat-expansion properties of the substrate correspond to those of the i.c. devices to maintain bond integrity between the i.c. leads and circuit paths on the substrate and so that the substrate has sufficient heat-dissipating properties to permit the high density i.c. mounting. The substrates incorporate circuit paths, device mounting pads, edge terminals, pin mounting holes and other typical substrate features in the etched patterns in multimetal laminated metal plates of selected thickness which are coated on one or both sides with glass frit fused to the plates. Where substrates with more than one layer are desired, glass-coated plates are stacked with pin mounting holes and the like aligned and the glass coatings are fused together. Metal vias extend through the glass coatings where desired to interconnect metal layers of the substrate.
摘要:
An electronic circuit interconnection system provides high density mounting on ceramic chip-carrier integrated circuit devices or other beam-lead, dual-in-line (DIP), tape-automated-bonded (TAB), flip-chip, or direct-mounted i.c. devices with wire-bonded interconnects or the like on an economical, dimensionally-stable, interconnection substrate which has high heat dissipating properties. The substrate has glass components which are fused onto etched metal patterns and which are proportioned relative to the metal patterns so that the heat-expansion properties of the substrate correspond to those of the i.c. devices to maintain bond integrity between the i.c. leads and circuit paths on the substrate and so that the substrate has sufficient heat-dissipating properties to permit the high density i.c. mounting. The substrates incorporate circuit paths, device mounting pads, edge terminals, pin mounting holes and other typical substrate features in the etched patterns in multimetal laminated metal plates of selected thickness which are coated on one or both sides with glass frit fused to the plates. Where substrates with more than one layer are desired, glass-coated plates are stacked with pin mounting holes and the like aligned and the glass coatings are fused together. Metal vias extend through the glass coatings where desired to interconnect metal layers of the substrate.
摘要:
An electronic circuit interconnection system permitting high density mounting of ceramic chip-carrier integrated circuit devices or other beam-lead, dual-in-line (DIP), tape-automated-bonded (TAB), flip-chip, or direct-mounted i.c. devices with wire-bonded interconnects or the like has economical, dimensionally-stable, interconnection substrate which has high heat dissipating properties. The substrate has glass components which are fused onto etched metal patterns and which are proportioned relative to the metal patterns so that the heat-expansion properties of the substrate correspond to those of the i.c. devices to maintain bond integrity between the i.c. leads and circuit paths on the substrate and so that the substrate has sufficient heat-dissipating properties to permit the high density i.c. mounting. The substrates incorporate circuit paths, device mounting pads, edge terminals, pin mounting holes and other typical substrate features in the etched patterns in multimetal laminated metal plates of selected thickness which are coated on one or both sides with glass frit fused to the plates. Where substrates with more than one layer are desired, glass-coated plates are stacked with pin mounting holes and the like aligned and the glass coatings are fused together. Metal vias extend through the glass coatings where desired to interconnect metal layers of the substrate.
摘要:
An improved surface acoustic wave sensor in which two surface acoustic wave arrays are disposed in predetermined overlapping relationship by the use of a sealing compound which both establishes a thin sealed cavity and spaces the two surface acoustic wave arrays apart a predetermined distance, thereby eliminating the need for spacing rings or the like.
摘要:
A method is described of etching structures into .alpha. quartz and LiNbO.sub.3, two materials widely used in surface wave devices and which heretofore have not been found suitable for use with chemical etching techniques, in which concentrated HF acid at a predetermined temperature is used as an etchant, and the formation of overhanging ledges accomplished through a specific crystal orientation. Steps are shown which avoid the problems associated with suitable masking of the surface, which problems were encountered in the prior art, a primary step being one of a mechanical-chemical polishing to assure that the resist mask adheres to the surface properly.