摘要:
Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
摘要:
Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
摘要:
Provided are a nonvolatile memory cell and a method of manufacturing the same. The nonvolatile memory cell includes a memory transistor and a driver transistor. The memory transistor includes a semiconductor layer, a buffer layer, an organic ferroelectric layer, and a gate electrode, which are disposed on a substrate. The driver transistor includes the semiconductor layer, the buffer layer, a gate insulating layer, and the gate electrode, which are disposed on the substrate. The memory transistor and the driver transistor are disposed on the same substrate. The nonvolatile memory cell is transparent in a visible light region.
摘要:
Provided are a transparent nonvolatile memory thin film transistor (TFT) and a method of manufacturing the same. The memory TFT includes source and drain electrodes disposed on a transparent substrate. A transparent semiconductor thin layer is disposed on the source and drain electrodes and the transparent substrate interposed between the source and drain electrodes. An organic ferroelectric thin layer is disposed on the transparent semiconductor thin layer. A gate electrode is disposed on the organic ferroelectric thin layer in alignment with the transparent semiconductor thin layer. Thus, the transparent nonvolatile memory TFT employs the organic ferroelectric thin layer, the oxide semiconductor thin layer, and auxiliary insulating layers disposed above and below the organic ferroelectric thin layer, thereby enabling low-cost manufacture of a transparent nonvolatile memory device capable of a low-temperature process.
摘要:
Provided is a phase-change element capable of operating with low power consumption and a method of manufacturing the same. The phase-change element comprises a first electrode used as a heating layer, a second electrode, which is laterally disposed adjacent to the first electrode, and a memory layer made of a phase-change material located between and contacting the side surfaces of the first electrode and the second electrode.
摘要:
Disclosed are an inverter, a NAND gate, and a NOR gate. The inverter includes: a pull-up unit constituted by a second thin film transistor outputting a first power voltage to an output terminal according to a voltage applied to a gate; a pull-down unit constituted by a fifth thin film transistor outputting a ground voltage to the output terminal according to an input signal applied to a gate; and a pull-up driver applying a second power voltage or the ground voltage to the gate of the second thin film transistor according to the input signal.
摘要:
Provided are a memory cell and a memory device using the same, particularly, a nonvolatile non-destructive readable random access memory cell including a ferroelectric transistor as a storage unit and a memory device using the same. The memory cell includes a ferroelectric transistor having a drain to which a reference voltage is applied, a first switch configured to allow a source of the ferroelectric transistor to be connected to a first line in response to a scan signal, and a second switch configured to allow a gate of the ferroelectric transistor to be connected to a second line in response to the scan signal. The memory device enables random access and performs non-destructive read-out (NDRO) operations.
摘要:
Provided are a method of fabricating a zinc-tin-oxide (ZTO) thin film, a thin film transistor employing the same, and a method of fabricating a thin film transistor. The method of fabricating a ZTO thin film includes depositing zinc oxide and tin oxide at a deposition temperature of 450° C. or lower so that a zinc-to-tin atomic ratio is 4:1 or greater, to form an amorphous ZTO thin film. In the thin film transistor, the ZTO thin film is used as a channel layer.
摘要:
Provided are a nonvolatile memory device and a method of fabricating the same, in which a phase-change layer is formed using a solid-state reaction to reduce a programmable volume, thereby lessening power consumption. The device includes a first reactant layer, a second reactant layer formed on the first reactant layer, and a phase-change layer formed between the first and second reactant layers due to a solid-state reaction between a material forming the first reactant layer and a material forming the second reactant layer. The phase-change memory device consumes low power and operates at high speed.
摘要:
Provided are a phase-change memory device using a phase-change material having a low melting point and a high crystallization speed, and a method of fabricating the same. The phase-change memory device includes an antimony (Sb)-selenium (Se) chalcogenide SbxSe100-x phase-change material layer contacting a heat-generating electrode layer exposed through a pore and filling the pore. Due to the use of SbxSe100-x in the phase-change material layer, a higher-speed, lower-power consumption phase-change memory device than a GST memory device can be manufactured.