摘要:
Two color transformations, as described herein, facilitate identification of the objects of interest in the biological specimen. One of the color transformations, a Minus Clear Plus One (MC+1) transformation, can be conceptualized as either translating and rotating axes of a three-dimensional coordinate space that defines an image of the biological specimen or calculating differences between vectors in the three dimensional coordinate space that defines the image of the biological specimen. The other of the color transformations, a Quantitative Chromatic Transformation (QCT), is a colorimetric transformation that produces three new quantitities from the original red, green, and blue pixel values for each color pixel of an image. These three new quantities, X, Y, and Z can each be related to the quantitative amount of absorbing molecules sampled by that pixel. Application of one or both of the color transformations to the image of the biological specimen results in a transformed image, in which objects of interest are more readily identifiable.
摘要:
Two color transformations, as described herein, facilitate identification of the objects of interest in the biological specimen. One of the color transformations, a Minus Clear Plus One (MC+1) transformation, can be conceptualized as either translating and rotating axes of a three-dimensional coordinate space that defines an image of the biological specimen or calculating differences between vectors in the three dimensional coordinate space that defines the image of the biological specimen. The other of the color transformations, a Quantitative Chromatic Transformation (QCT), is a calorimetric transformation that produces three new quantities from the original red, green, and blue pixel values for each color pixel of an image. These three new quantities, X, Y, and Z can each be related to the quantitative amount of absorbing molecules sampled by that pixel. Application of one or both of the color transformations to the image of the biological specimen results in a transformed image, in which objects of interest are more readily identifiable.
摘要:
The present invention is directed to a method of reducing intraocular pressure. The method comprises administering to a subject a pharmaceutical composition comprising an effective amount of a nucleoside 5′-pyrophosphate pyranoside or analogue, which is defined by general Formula I. The method of the present invention is useful in the treatment or prevention of ocular hypertension, such as found in glaucoma, including primary and secondary glaucoma. The method can be used alone to reduce intraocular pressure. The method can also be used in conjunction with another therapeutic agent or adjunctive therapy commonly used to treat glaucoma to enhance the therapeutic effect of reducing the intraocular pressure. The present invention also provides a novel composition comprising a nucleoside 5′-pyrophosphate pyranoside or analogue.
摘要:
The system and method for evaluating the amount of marker identifying precipitate in a cellular specimen on a microscope slide is disclosed. The automated microscope system performs a low magnification and high magnification scan of a cellular specimen to identify and confirm candidate objects of interest which correspond to cells containing a marker identifying precipitate. A regularly shaped area centered about a centroid computed for a candidate object of interest is used to define the pixels to be processed. A color ratio is computed for each pixel and those color ratios indicative of being dominated by the color corresponding to the marker identified precipitate are summed and normalized. The normalized color ratio is compared to at least one predetermined threshold to assign a grade to the candidate objects of interest. The grades for a predetermined number of candidate objects of interest are summed to form an aggregate score and the aggregate score is compared to a threshold. If the aggregate score exceeds a threshold, the candidate object of interest is determined to indicate the medical condition typically associated with the marker.
摘要:
Two color transformations, as described herein, facilitate identification of the objects of interest in the biological specimen. One of the color transformations, a Minus Clear Plus One (MC+1) transformation, can be conceptualized as either translating and rotating axes of a three-dimensional coordinate space that defines an image of the biological specimen or calculating differences between vectors in the three dimensional coordinate space that defines the image of the biological specimen. The other of the color transformations, a Quantitative Chromatic Transformation (QCT), is a calorimetric transformation that produces three new quantities from the original red, green, and blue pixel values for each color pixel of an image. These three new quantities, X, Y, and Z can each be related to the quantitative amount of absorbing molecules sampled by that pixel. Application of one or both of the color transformations to the image of the biological specimen results in a transformed image, in which objects of interest are more readily identifiable.
摘要:
This invention is directed to a method of preventing or treating diseases or conditions associated with platelet aggregation. The method is also directed to a method of treating thrombosis or related disorders. The method comprises administering to a subject a pharmaceutical composition comprising an effective amount of a non-nucleotide pyrimidine-based compound, preferably a P2Y12 receptor antagonist compound, wherein said amount is effective to inhibit platelet aggregation. The compounds useful for this invention include compounds of general Formulae I and Ia-Ic, or tautomers, salts, hydrates, and solvates thereof. The present invention also provides novel compounds of Formulae I and Ia-Ic.
摘要:
The present invention is directed to a processes for the synthesis of trans isomer of 4,6-disubstituted-tetrahydro-furo, thieno, pyrrolo and cyclopenta-[3,4][1,3]dioxoles (Formula I). The process comprises the steps of: (a) obtaining a compound of Formula II, which is a mixture of cis and trans-diastereomers, and (b) chemically decomposing the compound of Formula II in a solution comprising a solvent and an acid that is a hydrogen donor or an electron pair acceptor, whereby the cis diastereomer is decomposed and the compound of Formula I is obtained. The compounds prepared by the present invention are useful in treating diseases or conditions associated with platelet aggregation and/or platelet activation.
摘要:
The present invention provides a P2Y12 receptor antagonist compound-eluting stent, wherein the stent is coated with one or more P2Y12 receptor antagonist compounds or a pharmaceutically acceptable salt, solvate, or hydrate thereof. When the stent is placed in a narrowed or damaged arterial vessel, a therapeutically effective amount of the P2Y12 receptor antagonist compound is eluted continuously from the stent to the local environment of the stent. The P2Y12 receptor antagonist compound-eluting stents are useful in preventing thrombosis and restenosis, and are effective in inhibiting the contraction of vascular smooth muscle cells, inhibiting cell proliferation, and reducing inflammation.
摘要:
The present invention provides a drug-eluting stent, wherein the stent is coated with one or more non-mucleotide P2Y12 receptor antagonist compounds or a pharmaceutically acceptable salt, solvate, or hydrate thereof. When the stent is placed in a narrowed or damaged arterial vessel, a therapeutically effective amount of the P2Y12 receptor antagonist compound is eluted continuously from the stent to the local environment of the stent. The P2Y12 receptor antagonist compound-eluting stents are useful in preventing thrombosis and restenosis, and are effective in inhibiting the contraction of vascular smooth muscle cells, inhibiting cell proliferation, and reducing inflammation.
摘要:
A method of compressing a color image is provided. The color image comprises color data for a plurality of pixels. The method includes the step of obtaining red, green and blue pixel values of an object of interest in the image. A calculation is made of the complement of the red, green and blue values of the object of interest. Transformation coefficients are calculated which transform the complements of red, green and blue values of the object of interest into representations in a transformation color space. The transformation coefficients are applied to all the pixels in the image to thereby obtain a transformed data set representing the image having components along three mutually orthogonal axes (A, B and C herein) in a three-dimensional transformed color space. The transformed data set is scaled in accordance with the color quantization used in the system; e.g., the A, B and C values are between 0 and 255 for an 8 bit quantization. A compression algorithm, e.g., a loss less algorithm such as WINZip or LZW is applied to at least two components of the transformed data set to thereby produce output data representing a compression of the image.