Abstract:
Aspects of the present disclosure relate switching between autonomous and manual driving modes. In order to do so, the vehicle's computer may conduct a series of environmental, system, and driver checks to identify certain conditions. The computer may correct some of these conditions and also provide a driver with a checklist of tasks for completion. Once the tasks have been completed and the conditions are changed, the computer may allow the driver to switch from the manual to the autonomous driving mode. The computer may also make a determination, under certain conditions, that it would be detrimental to the driver's safety or comfort to make a switch from the autonomous driving mode to the manual driving mode.
Abstract:
A controlled vehicle is provided that detects the presence of an emergency vehicle by monitoring the trajectories of vehicles that are sharing the road with the controlled vehicle. The controlled vehicle may determine that the trajectory of each of the monitored vehicles follows the same predetermined pattern. Based on detecting the predetermined pattern in the behavior of the monitored vehicles, the controlled vehicle may deduce that an emergency vehicle is present in the vicinity of the monitored vehicles and/or the controlled vehicle.
Abstract:
Aspects of the present disclosure relate switching between autonomous and manual driving modes. In order to do so, the vehicle's computer may conduct a series of environmental, system, and driver checks to identify certain conditions. The computer may correct some of these conditions and also provide a driver with a checklist of tasks for completion. Once the tasks have been completed and the conditions are changed, the computer may allow the driver to switch from the manual to the autonomous driving mode. The computer may also make a determination, under certain conditions, that it would be detrimental to the driver's safety or comfort to make a switch from the autonomous driving mode to the manual driving mode.
Abstract:
Methods and systems for control of vehicles based on auditory signals are described. In an example, a computing device may be configured to control a vehicle or may be in communication with the vehicle. The computing device may be configured to receive audio information relating to an audible crosswalk signal for an intersection. The computing device also may be configured to determine a likelihood associated with a presence of a pedestrian in a crosswalk at the intersection based on the audio information. The computing device further may be configured to determine a control strategy associated with a driving behavior of the vehicle from among multiple control strategies, based on the likelihood, and may be configured to provide instructions to control the vehicle based on the determined control strategy.
Abstract:
Methods and systems for control of vehicles based on auditory signals are described. In an example, a computing device may be configured to control a vehicle or may be in communication with the vehicle. The computing device may be configured to receive audio information relating to an audible crosswalk signal for an intersection. The computing device also may be configured to determine a likelihood associated with a presence of a pedestrian in a crosswalk at the intersection based on the audio information. The computing device further may be configured to determine a control strategy associated with a driving behavior of the vehicle from among multiple control strategies, based on the likelihood, and may be configured to provide instructions to control the vehicle based on the determined control strategy.
Abstract:
Aspects of the present disclosure relate to a vehicle for maneuvering a passenger to a destination autonomously. The vehicle includes one or more computing devices and a set of user input buttons for communicating requests to stop the vehicle and to initiate a trip to the destination with the one or more computing devices. The set of user input buttons consisting essentially of a dual-purpose button and an emergency stopping button different from the dual-purpose button configured to stop the vehicle. The dual-purpose button has a first purpose for communicating a request to initiate the trip to the destination and a second purpose for communicating a request to pull the vehicle over and stop the vehicle. The vehicle has no steering wheel and no user inputs for the steering, acceleration, and deceleration of the vehicle other than the set of user input buttons.
Abstract:
Aspects of the disclosure relate generally to generating and providing route options for an autonomous vehicle. For example, a user may identify a destination, and in response the vehicle's computer may provide routing options to the user. The routing options may be based on typical navigating considerations such as the total travel time, travel distance, fuel economy, etc. Each routing option may include not only an estimated total time, but also information regarding whether and which portions of the route may be maneuvered under the control of the vehicle alone (fully autonomous), a combination of the vehicle and the driver (semiautonomous), or the driver alone. The time of the longest stretch of driving associated with the autonomous mode as well as map information indicating portions of the routes associated with the type of maneuvering control may also be provided.