摘要:
A minimal-duration current pulse is employed to program a programmable resistance memory to a high-resistance, RESET state. Although the duration and magnitude of RESET programming pulses in accordance with the principles of the present invention may vary depending, for example, upon the composition and structure of a cell, a method and apparatus in accordance with the principles of the present invention employs the briefest pulse practicable for a given cell or array of cells.
摘要:
A memory element, a threshold switching element, or the series combination of a memory element and a threshold switching element may be used for coupling conductive lines in an electrically programmable matrix array. Leakage may be reduced by optionally placing a breakdown layer in series with the phase-change material and/or threshold switching material between the conductive lines. The matrix array may be used in a programmable logic device.
摘要:
A chalcogenide material and chalcogenide memory device having less stringent requirements for formation, improved thermal stability and/or faster operation. The chalcogenide materials include materials comprising Ge, Sb and Te in which the Ge and/or Te content is lean relative to the commonly used Ge2Sb2Te5 chalcogenide composition. Electrical devices containing the instant chalcogenide materials show a rapid convergence of the set resistance during cycles of setting and resetting the device from its as-fabricated state, thus leading to a reduced or eliminated need to subject the device to post-fabrication electrical formation prior to end-use operation. Improved thermal stability is manifested in terms of prolonged stability of the resistance of the device at elevated temperatures, which leads to an inhibition of thermally induced setting of the reset state in the device. Significant improvements in the 10 year data retention temperature are demonstrated. Faster device operation is achieved through an increased speed of crystallization, which acts to shorten the time required to transform the chalcogenide material from its reset state to its set state in an electrical memory device.
摘要:
A lateral phase change memory includes a pair of electrodes separated by an insulating layer. The first electrode is formed in an opening in an insulating layer and is cup-shaped. The first electrode is covered by the insulating layer which is, in turn, covered by the second electrode. As a result, the spacing between the electrodes may be very precisely controlled and limited to very small dimensions. The electrodes are advantageously formed of the same material, prior to formation of the phase change material region.
摘要:
A carbon containing layer may be formed between a pair of chalcogenide containing layers of a phase change memory. When the lower chalcogenide layer allows current to pass, a filament may be formed therein. The filament then localizes the electrical heating of the carbon containing layer, converting a relatively localized region to a lower conductivity region. This region then causes the localization of heating and current flow through the upper phase change material layer. In some embodiments, less phase change material may be required to change phase to form a phase change memory, reducing the current requirements of the resulting phase change memory.
摘要:
A method of customizing an integrated circuit chip, comprising the steps of: providing an electronic circuit on said chip; providing a phase-change memory on the chip; storing information about said electronic circuit in the phase-change memory. A method of operating an optical display.
摘要:
Briefly, in accordance with an embodiment of the invention, a lateral phase change memory and a method to manufacture a phase change memory is provided. The method may include forming a conductor material over a substrate and patterning the conductor material to form two electrodes from the conductor material, wherein the two electrodes are separated by a sub-lithographic distance. The method may further include forming a phase change material between the two electrodes.
摘要:
A memory device including a plurality of memory cells, a plurality of insulated first regions of a first type of conductivity formed in a chip of semiconductor material, at least one second region of a second type of conductivity formed in each first region, a junction between each second region and the corresponding first region defining a unidirectional conduction access element for selecting a corresponding memory cell connected to the second region when forward biased, and at least one contact for contacting each first region; a plurality of access elements are formed in each first region, the access elements being grouped into at least one sub-set consisting of a plurality of adjacent access elements without interposition of any contact, and the memory device further includes means for forward biasing the access elements of each sub-set simultaneously.
摘要:
A parallel distributed processor comprises matrices of unit cells arranged in a stacked configuration. Each unit cell includes a chalcogenide body which may be set and reset to a plurality of values of a given physical property. Interconnections between the unit cells are established via the chalcogenide materials and the pattern and strength of the interconnections is determined by the set values of the chalcogenide. The processor is readily adapted to the construction of neural network computing systems.
摘要:
An electrical device includes a first electrode and a second electrode. A first active material is between the first electrode and second electrode. A second active material is between the first electrode and second electrode. A nonlinear electrode material is disposed between the first electrode and the second electrode. The nonlinear electrode material is electrically in series with the first electrode, the first active material, the second active material, and the second electrode. The first electrode and the first active material undergo no chemical or electrochemical reaction when current passes between the first electrode and the second electrode.