Abstract:
Liquid crystal coupled light modulation includes a light guide to guide light by total internal reflection (TIR), a diffraction grating and a liquid crystal sandwiched between the diffraction grating and the light guide. The liquid crystal has a state with a first refractive index to defeat TIR and another state with a second refractive index to facilitate TIR at a surface of the light guide. The liquid crystal in the first refractive index state is to couple out a portion of the guided light to the diffraction grating and the diffraction grating is to provide diffractive redirection of the coupled portion out of the light modulator.
Abstract:
Techniques related to optical devices including a high contrast grating (HCG) lens are described herein. In an example, an optical device includes a transparent substrate. A laser emitter or detector at a first side of the transparent substrate to emit or detect a laser light transmitted via the transparent substrate. A HCG lens is at a second side of the transparent substrate to transmit and refract the laser light.
Abstract:
An optical coupling system includes an optical signal source to provide an optical signal from an aperture. The system also includes a substantially planar high-contrast grating (HCG) lens to convert an optical mode of the optical signal to provide a converted optical signal having a mode-isolating intensity profile. The system further includes an optical element to receive the converted optical signal. The optical signal source and the substantially planar HCG lens can be arranged to substantially mitigate coupling of a reflected optical signal associated with the converted optical signal that is reflected from the optical element to the aperture of the optical signal source based on a reflected mode-isolating intensity profile.
Abstract:
A multiview 3D telepresence system is disclosed. The system includes an integral imaging capture system and a direct view display system. The integral imaging capture system has a microlens array and a plurality of image sensors to generate a plurality of input image views. The direct view display system has a directional backplane with a plurality of directional pixels to scatter a plurality of input planar lightbeams into a plurality of directional lightbeams. A shutter layer in the direct view display system receives the plurality of input image views from the integral imaging capture system and modulates the plurality of directional lightbeams to generate a plurality of output image views for display.
Abstract:
A laser includes an active ring, a passive waveguide, and a reflector. The active ring is to generate light. The passive waveguide is associated with the active ring to capture generated light. The reflector is associated with the passive waveguide to cause captured light from the waveguide to be coupled into the active ring to trigger domination of unidirectional lasing in the active ring to generate light.
Abstract:
A light modulator includes a light guide to guide light by total internal reflection, a diffraction grating at a surface of the light guide, and a liquid crystal in contact with the diffraction grating. The liquid crystal has a first state with a first refractive index that substantially matches a refractive index of a material of the diffraction grating to defeat the diffractive coupling. The liquid crystal has a second state with a second refractive index that differs from the first refractive index to facilitate the diffractive coupling.
Abstract:
Various embodiments of the present invention are directed to optical devices comprising planar lenses. In one aspect, an optical device includes two or more planar lenses, and one or more dielectric layers. Each planar lens includes a non-periodic, sub-wavelength grating layer, and each dielectric layer is disposed adjacent to at least one planar lens to form a solid structure. The two or more planar lenses are substantially parallel and arranged to have a common optical axis so that light transmitted through the optical device substantially parallel to the optical axis is refracted by the two or more planar lenses.
Abstract:
Techniques relating to optical shuffling are described herein. In an example, a system for shuffling a plurality of optical beams is described. The system includes a plurality of sources to output respective beams of light. The system further includes a plurality of receivers to receive respective beams of light. The system further includes a shuffling assembly including a plurality of sub-wavelength grating (SWG) sections. Each of the plurality of SWG sections is for defining optical paths of the plurality of beams. The plurality of SWG sections includes at least one reflecting SWG section to reflect and direct light from a respective one of the plurality of sources toward a respective one of the plurality of receivers.
Abstract:
A display is disclosed. The display has a backplane with a top surface and an edge surface. The edge surface makes an angle α with respect to the top surface. An optical system is used to create a collimated light beam that is coupled to the edge surface. The collimated light beam makes an angle β with respect to the top surface. The optical axis of the light beam has a refracted angle β′ with respect to the top surface. Angles α and β are selected such that β′ is no smaller than α.
Abstract:
An example apparatus may include a light source for illuminating a sample, an objective lens positioned on a light path extending from the sample, a lenslet array having a plurality of lenslets and positioned along the light path to receive light from the objective lens. The lenslet array may be positioned along the light path at substantially a Fourier plane of the sample. The example apparatus may also include a detector positioned along the light path approximately one lenslet focal length from the lenslet array. The plurality of lenslets of the lenslet array may correspond to portions of the detector. Each lenslet of the lenslet array may transmit to a corresponding portion of the detector an image of the same portion of the sample from a different viewing angle.