Abstract:
A method for controlling intake and exhaust valves of an engine includes: controlling, by an intake continuous variable valve timing (CVVT) device, opening and closing timings of the intake valve; controlling, by an exhaust CVVT device, opening and closing timing of the exhaust valve; determining, by a controller, first to fifth control regions based on engine load and speeds, and a target opening duration of the intake valve and target opening or target closing timings of the intake valve; modifying, by an intake continuous variable valve duration (CVVD) device, current opening and closing timings of the intake valve based on the target opening duration; and advancing or retarding, by the intake CVVD device, the current opening timing of the intake valve while simultaneously retarding or advancing the current closing timing of the intake valve by a predetermined value based on the target opening duration of the intake valve.
Abstract:
A method for controlling intake and exhaust valves of an engine may include: determining, by a controller, a target opening duration of the intake and exhaust valves according to a control region determined based on an engine load and an engine speed; modifying, by an intake continuous variable valve duration (CVVD) device and by an exhaust CVVD device, opening and closing timings of the intake valve and exhaust valve based on the target opening duration of the valves; and advancing or retarding, by the intake and/or exhaust CVVD devices, the opening timing of the intake and exhaust valves while simultaneously retarding or advancing the closing timing of the intake and exhaust valve by a predetermined value based on the target opening durations. In particular, the controller classifies five control regions based on the engine load and speed.
Abstract:
A method for controlling intake and exhaust valves of an engine includes: Controlling opening and closing timings of the intake and exhaust valves by an intake continuous variable valve timing (CVVT) device and an exhaust CVVT devices; determining, by a controller, target intake and exhaust opening durations of the intake and exhaust valves, and target opening and closing timings of the valves based on an engine load and an engine speed; modifying current intake and exhaust opening durations based on the target opening durations via an intake continuous variable valve duration (CVVD) device and an exhaust CVVD device; adjusting opening or closing timings of the valves to the target opening or closing timings of the valves while maintaining the modified opening durations of the valves.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration engine. The method may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve in a first control region; maintaining the maximum duration of the intake valve and controlling a valve overlap by using exhaust valve closing (EVC) timing in a second control region; advancing intake valve closing (IVC) timing in a third control region; controlling the IVC timing to be close to bottom dead center (BDC) in a fourth control region; controlling a throttle valve to be fully opened and generating a scavenging phenomenon in a fifth control region; and controlling the throttle valve to be fully opened and controlling the IVC timing to prevent knocking in a sixth control region.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration engine. The method may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve in a first control region; maintaining the maximum duration of the intake valve and controlling a valve overlap by using exhaust valve closing (EVC) timing in a second control region; advancing intake valve closing (IVC) timing in a third control region; controlling the IVC timing to be close to bottom dead center (BDC) in a fourth control region; controlling a throttle valve to be fully opened and generating a scavenging phenomenon in a fifth control region; and controlling the throttle valve to be fully opened and controlling the IVC timing to prevent knocking in a sixth control region.
Abstract:
A continuous variable valve duration apparatus may include a camshaft, a cam device on which a cam is formed, of which the camshaft is inserted thereto and of which a relative phase angle with respect to the camshaft is variable, an internal bracket transmitting rotation of the camshaft to the cam device, a wheel housing in which the internal bracket is rotatably inserted and on which a guide groove parallel to the camshaft is formed, a control portion including a control shaft disposed parallel to the camshaft and inserted into the guide groove, and the control portion selectively rotating the control shaft for the relative position of the wheel housing with respect to the camshaft to be changed and a slider housing interposed between the control shaft and the guide groove.
Abstract:
Methods and devices are provided for controlling an engine provided with a continuously variable valve timing (CVVT) device disposed on an intake valve side, and with a continuous variable valve duration (CVVD) device and a continuously variable valve timing (CVVT) disposed on an exhaust valve side according to an exemplary form of the present disclosure. A method may include classifying a plurality of control regions depending on an engine speed and an engine load, and based upon which of the plurality of control regions is a control region of the engine, controlling opening and closing timing of the intake valve, controlling opening and closing timing of the exhaust valve, and controlling open duration of the exhaust valve.
Abstract:
A method for controlling valve timing of a continuous variable valve duration engine may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap between an exhaust valve and an intake valve by using an exhaust valve closing (EVC) timing in a first control region; advancing an intake valve closing (IVC) timing and applying a maximum duration to the exhaust valve in a second control region; advancing the IVC timing and the EVC timing in a third control region; controlling the EVC timing in a fourth control region; controlling a throttle valve to be fully opened and controlling the IVC timing in a fifth control region; and controlling the throttle valve to be fully opened and advancing the IVC timing in a sixth control region.
Abstract:
A control method for exhaust gas recirculation of a hybrid electric vehicle includes detecting a pressure of an intake manifold. A difference between the pressure of the intake manifold and atmospheric pressure is determined. A load of an engine, which generates torque by combusting a fuel and external air supplied through the intake manifold, is determined. An opening rate of an exhaust gas recirculation valve is controlled to be a first value according to a rotational speed of the engine when the difference is smaller than or equal to a reference pressure and the load of the engine is smaller than or equal to a reference load.
Abstract:
A continuous variable valve duration apparatus is provided. The apparatus includes a camshaft and a cam unit on which a cam is formed. The camshaft is inserted into the cam unit. An inner wheel transmits rotation of the camshaft to the cam unit. The inner wheel is rotatably inserted in a wheel housing a housing hinge aperture parallel to the camshaft is formed on the wheel housing. A slider hinge aperture and a slider control aperture parallel to the camshaft are formed through a slider. A hinge shaft is inserted into the housing hinge aperture and the slider hinge aperture. An eccentric cam is formed on a control shaft and is inserted into the slider control aperture. A controller selectively rotates the control shaft to move the wheel housing perpendicular to the camshaft via the slider.