摘要:
The disclosed method for producing a microstructure can form a complicated three-dimensionally formed microstructure with few steps.A first mask pattern (22) containing a light transmitting section and a light blocking section is disposed along an unexposed photosensitive resin (42), and a second mask pattern (32) containing a light transmitting section and a light blocking section is disposed on the reverse side of the first mask pattern (22) from the photosensitive resin (42). Additionally, by means of integrally rotating the photosensitive resin (42) and the first mask pattern (22) around a central axis (Z) that passes through the photosensitive resin (42) and the first mask pattern (22), and at the same time radiating exposure light from the reverse side of the second mask pattern (32) from the photosensitive resin (42) and the first mask pattern (22) in a direction that is inclined obliquely with respect to the direction of the central axis (Z), the light beam of the exposure light that is transmitted through the light transmitting section of the second mask pattern (32) and the light transmitting section of the first mask pattern (22) exposes the photosensitive resin (42).
摘要:
The disclosed method for producing a microstructure can form a complicated three-dimensionally formed microstructure with few steps.A first mask pattern (22) containing a light transmitting section and a light blocking section is disposed along an unexposed photosensitive resin (42), and a second mask pattern (32) containing a light transmitting section and a light blocking section is disposed on the reverse side of the first mask pattern (22) from the photosensitive resin (42). Additionally, by means of integrally rotating the photosensitive resin (42) and the first mask pattern (22) around a central axis (Z) that passes through the photosensitive resin (42) and the first mask pattern (22), and at the same time radiating exposure light from the reverse side of the second mask pattern (32) from the photosensitive resin (42) and the first mask pattern (22) in a direction that is inclined obliquely with respect to the direction of the central axis (Z), the light beam of the exposure light that is transmitted through the light transmitting section of the second mask pattern (32) and the light transmitting section of the first mask pattern (22) exposes the photosensitive resin (42).
摘要:
A device for introducing a substance into a cell which can realize a high-efficient external substance introduction by means of electro-poration not depending on a cell size, a cell clamping device capable of clamping a cell at many locations, and a flow path forming method capable of efficiently forming a flow path. The device for introducing a substance into a cell (10a) comprises an insulating thin film (2) having a pore (1) and a pair of electrodes (6, 7) disposed on the opposite sides of the film (2) across the pore (1). When a cell (9) is fixed to the pore (1) and a pulse voltage is applied to between the electrodes (6, 7) with a space (5) filled with a fluid containing substance (4) to be introduced into the cell (9), a field concentration to a pore portion is used to destroy a cell membrane to thereby introduce the substance (4) into the cell (9).
摘要:
A vibrating mirror element including a detection electrode to detect driving and capable of being easily manufactured is provided. This vibrating mirror element includes a mirror portion and a driving portion driving the mirror portion, and the driving portion has a drive electrode to deform the driving portion by application of a voltage to drive the driving portion and a detection electrode to detect the amount of deformation of the driving portion, both arranged therein.
摘要:
A piezoelectric thin film element D, in which a piezoelectric thin film 1 with first and second electrode films 2 and 3 respectively formed on its opposite surfaces in the thickness direction is held by a hold film 5, is fabricated by forming each film 1, 2, 3, and 5 on a film formation substrate 11 and removing the film formation substrate 11 by etching. Even when the hold film 5 is made of material such as resin and therefore exhibits relatively poor adhesion with respect to the other films, the piezoelectric thin film 1 is protected from damage by etchant because the first electrode film 2 which comes into contact with the film formation substrate 11 is formed such that the overall circumference of a peripheral edge portion of the first electrode film 2 laterally extends beyond the lateral surface of the piezoelectric thin film 1 and closely adheres to the hold film 5.
摘要:
The invention provides a compact and high performance infrared radiation detector. The infrared radiation detector contains: a substrate; and at least two infrared radiation detector units selected from the group consisting of a pyroelectric infrared radiation detector unit, a resistive bolometer type infrared radiation detector unit and a ferroelectric bolometer type infrared radiation detector unit, the infrared radiation detector units being disposed on the same side of the substrate.
摘要:
To provide a piezoelectric thin film having an improved and stable characteristic by controlling stress applied during forming a piezoelectric thin film and providing the piezoelectric thin film having a perovskite structure. A thin film piezoelectric element in which a lower electrode is formed on a substrate, a piezoelectric thin film containing lead is formed on the lower electrode, and an upper electrode is further placed on the piezoelectric thin film, characterized in that the piezoelectric thin film is a dielectric with the perovskite structure having lead, zirconium, and titanium as the main ingredients, and is in a composition region in which, in the composition of the whole piezoelectric thin film, the. Zr/(Zr+Ti) ratio is not less than substantially 0.53, and has a crystal structure of the tetragonal system in which a c axis is longer than an a axis.
摘要:
A fluid ejection device, such as for an ink jet printer or the like, having increased increasing nozzle density. A through-hole (15) is provided in a glass substrate (18) to which a second silicon substrate (19) is directly bonded to form an ink outlet (14). The first silicon substrate (17) is etched to form a pressure chamber (12), an ink channel (13) and an ink inlet (16), and bonded directly to the glass substrate (18). A piezoelectric thin film (11), having a conductive, elastic body (20), is bonded to the first substrate covering the pressure chamber (12). The elastic body (20) is sandwiched between the piezoelectric thin film (11) and a resin layer (25). The second substrate (19) has a thickness of less than about 0.8 mm in a range of thickness comprising about 1.2 to about 1.9 times (rg-rs), wherein rg is the diameter of the wide end of the through-hole (15) and rs is the diameter of the narrow end of the through-hole (15).
摘要:
A variable-shape mirror has a driver portion, which includes a piezoelectric film and first and second electrode films that sandwich it therebetween, and a substrate arranged on the first electrode film to support the driver portion. As the driver portion is driven, the shape of a mirror film is varied. The substrate is formed of at least one material selected from the group of Si, SiO2, and MgO. The piezoelectric film is formed of PZT or of a perovskite oxide that contains Nb and that is the same kind as PZT. The first electrode film is formed of a plurality of layers of different compositions, and, of those layers, the one formed on the substrate is a metal layer of a composition containing at least one element selected from the group of Ti, Cr, and W and the one formed on the piezoelectric film is a metal layer of a composition containing at least one element selected from the group of Pt, Ir, and Ru.
摘要:
In order to provide a miniaturized ink jet head having a piezoelectric actuator 21 by which ink in a pressure chamber 3 is emitted and to improve its productivity and reliability, a vibration plate 22 is made up of two layers having different Young's moduli, i.e., a layer 27 having a smaller Young's modulus and a layer 28 having a greater Young's modulus. Further, the Young's modulus of each of the layers 27 and 28 is set at values ranging from 50 GPa to 350 GPa and the total thickness of the vibration plate 22 is set at values ranging from 1 &mgr;m to 7 &mgr;m.