摘要:
A magneto-resistance effect head is provided with a lower conductive layer which is provided with a recessed portion, and a vertical bias layer is provided in the recessed portion. A free layer is provided on the lower conductive layer. On the free layer, layered in the following order are the non-magnetic layer, the fixed layer, the fixing layer, and the upper layer so as not to be placed immediately above the vertical bias layer. The non-magnetic layer, the fixed layer, the fixing layer, and the upper layer are buried in an insulation layer. Furthermore, an upper conductive layer is provided on the upper layer and the insulation layer. In the direction of the magnetic field applied by the vertical bias layer, the free layer is made greater in length than the fixed layer and the free layer is disposed in proximity to the vertical bias layer with the distance between the fixed layer and the vertical bias layer remaining unchanged.
摘要:
A light emitting device in accordance with the present invention includes a light emitting element and a light sensor for detecting the luminous intensity of the light emitted from the light emitting element. The light emitting element includes a lower electrode, a light emitting material layer including at least a light emitting layer, and an upper electrode having light transparency, which are formed on a substrate in the named order. One of the lower electrode and the upper electrode acts as a cathode, and the other acts as an anode. The light sensor is formed on the light emitting element. Thus, it is possible to provide the light emitting device so configured to sufficiently prevent the unevenness of luminance and the deterioration in color balance, and to efficiently guide the light emitted from the light emitting element to the light sensor, so as to enable to detect the luminous intensity of the emitted light with high sensitiveness, with a minimized adverse mutual influence between the light emitting element and the light sensor.
摘要:
By inserting a first antistripping layer comprising a first non-magnetic layer 22 and a first conductive layer 23 between a first magnetic layer 16 and a magnetic separation layer 13, adhesion between the first conductive layer 23 and the magnetic separation layer 13 is improved to prevent the first magnetic layer 16 from stripping. In addition, by inserting a second antistripping layer comprising a second non-magnetic layer 24 and a second conductive layer 25 between a second magnetic layer 21 and a magnetic gap layer 17, adhesion between the second conductive layer 24 and the magnetic gap layer 17 is improved to prevent the second magnetic layer 25 from stripping.
摘要:
A light emitting device in accordance with the present invention includes a light emitting element and a light sensor for detecting the luminous intensity of the light emitted from the light emitting element. The light emitting element includes a lower electrode, a light emitting material layer including at least a light emitting layer, and an upper electrode having light transparency, which are formed on a substrate in the named order. One of the lower electrode and the upper electrode acts as a cathode, and the other acts as an anode. The light sensor is formed on the light emitting element.Thus, it is possible to provide the light emitting device so configured to sufficiently prevent the unevenness of luminance and the deterioration in color balance, and to efficiently guide the light emitted from the light emitting element to the light sensor, so as to enable to detect the luminous intensity of the emitted light with high sensitiveness, with a minimized adverse mutual influence between the light emitting element and the light sensor.
摘要:
A magneto-resistance effect head (MR head) is provided, wherein a lower electrode-cum-magnetic shield layer is provided on a substrate, a magnetic gap adjusting layer is provided thereon, a magneto-resistance effect element (MR element) is provided on the magnetic gap adjusting layer, and an upper electrode-cum-magnetic shield layer is provided on the MR element. A pair of vertical bias layers is provided at both sides of the MR element. In the MR element, a lower layer, a free magnetic layer, a nonmagnetic layer, a fixed magnetic layer, and a fixing layer are provided in order from the magnetic gap adjusting layer side. By providing the magnetic gap adjusting layer between the lower electrode-cum-magnetic shield layer and the free magnetic layer, the free magnetic layer can be made to be sufficiently separate from the lower electrode-cum-magnetic shield layer. Thereby, since a sufficient leak magnetic field can be applied to the free magnetic layer, the head reproduction output is improved.
摘要:
A magnetoresistive head whose operation depends on a magnetoresistive effect is configured using a ferromagnetic tunnel junction (MTJ) film, which is arranged between a lower electrode and an upper electrode. The ferromagnetic tunnel junction film is basically configured using a set of a free layer, a barrier layer and a fixing layer, which are sequentially formed and laminated on the lower electrode. Herein, the ferromagnetic tunnel junction film is designed to avoid electrostatic destruction in manufacture by prescribed measures. For example, the barrier layer is reduced in thickness at a terminal portion as compared with a center portion. Or, the barrier layer has a defect at the terminal portion. In addition, it is possible to provide a conductor in connection with the barrier layer in proximity to its terminal portion. Further, it is possible to attach re-adhesive substance, which is produced by milling for patterning of the ferromagnetic tunnel junction film, to a specific terminal surface of the ferromagnetic tunnel junction film which is opposite to an ABS plane. Those measures provide a bypass allowing overcurrent release between the free layer and fixing layer. Moreover, adjustment milling or plasma oxidation is employed to control an amount of the re-adhesive substance being attached to the terminal surface of the ferromagnetic tunnel junction film. Thus, by adequately optimizing the amount of the re-adhesive substance, it is possible to improve yield in manufacturing the magnetoresistive heads.
摘要:
The present invention provides a magneto-resistive (MR) element comprising: a first magnetic layer 1 provided on a substrate; a non-magnetic layer 3 arranged to be in contact with the first magnetic layer; and a second magnetic layer 2 arranged to be in contact with the non-magnetic layer; wherein sense current flowing in the first and the second magnetic layer is changed by a resistance change according to an external magnetic field, and a sense current flowing distance in the first magnetic layer and/or a sense current flowing distance in the second magnetic layer is longer than a sense current flowing distance in a superimposed portion of the first magnetic layer, the non-magnetic layer, and the second magnetic layer.
摘要:
The process for producing a low acid value phosphoric ester of the present invention is characterized by comprising treating a phosphoric ester having an acid value with an organic ortho-acid ester. The phosphoric ester preferably has a specific structure. The organic ortho-acid ester is preferably an ester of orthoformic acid, orthoacetic acid or orthopropionic acid with an alkyl group having 1 to 4 carbon atoms.
摘要:
Provided is a high purity polishing slurry which provides a material to be polished with a high scratch resistance and has a high polishing efficiency and which less contaminates the material to be polished. The polishing slurry comprises water and silica particles dispersed in water, wherein the above silica particles have an average primary particle size of 50 to 300 nm and a refractive index of 1.41 to 1.44 and are synthesized in a liquid phase and produced without passing through a drying step; and the K value is 5×10−6 mol/m2 or more. Further, a polishing process for a semiconductor wafer using the above polishing slurry is provided.
摘要翻译:提供了一种高纯度抛光浆料,其提供具有高耐刮擦性并且具有高抛光效率并且较少污染待抛光材料的待抛光材料。 抛光浆料包含分散在水中的水和二氧化硅颗粒,其中上述二氧化硅颗粒的平均一次粒径为50〜300nm,折射率为1.41〜1.44,合成液相,不经过干燥 步; K值为5×10 -6 mol / m 2以上。 此外,提供了使用上述抛光浆料的半导体晶片的抛光工艺。
摘要:
The invention provides a magnetoresistance effects film including (a) at least two thin magnetic films deposited on a substrate, (b) at least one thin nonmagnetic film interposed between the thin magnetic films, and (c) a thin antiferromagnetic film disposed adjacent to one of the thin magnetic films between which the thin nonmagnetic film is interposed. A bias magnetic field of one of the thin magnetic films induced by the thin antiferromagnetic film has an intensity Hr greater than a coercivity H.sub.C2 of the other of the thin magnetic films which is remote from the thin antiferromagnetic film (Hr>H.sub.C2). The thin antiferromagnetic film has a superlattice structure composed of at least two of NiO, Ni.sub.x Co.sub.1-x O(x=0.1-0.9) and CoO. A ratio of Ni relative to Co in the number of atoms in the superlattice structure is set equal to or greater than 1.0. The magnetoresistance effects film exhibits large linear change in resistance with the hysteresis being small even when a small external field is applied thereto.