Abstract:
Conventional power MOSFETs enables prevention of an inversion in a surrounding region surrounding the outer periphery of an element region by a wide annular layer and a wide sealed metal. Since, resultantly, the area of the surrounding region is large, increase in the element region has been restrained. A semiconductor device is hereby provided which has an inversion prevention region containing an MIS (MOS) structure. The width of polysilicon for the inversion prevention region is large enough to prevent an inversion since the area of an oxide film can be increased by the depth of the trench. By this, leakage current can be reduced even though the area of the region surrounding the outer periphery of the element region is not enlarged. In addition, since the element region is enlarged, on-state resistance of the MOSFET can be reduced.
Abstract:
Channel regions continuous with transistor cells are disposed also below a gate pad electrode. The channel region below the gate pad electrode is fixed to a source potential. Thus, a predetermined reverse breakdown voltage between a drain and a source is secured without forming a p+ type impurity region below the entire lower surface of the gate pad electrode. Furthermore, a protection diode is formed in a conductive layer disposed at the outer periphery of an operation region.
Abstract:
By integrating a diode and a resistor connected in parallel into the same chip as an IGBT and connecting a cathode of the diode to a gate of the IGBT, the value of dv/dt can be limited to a predetermined range inside the chip of the IGBT without a deterioration in turn-on characteristics. Since the chip includes a resistor having such a resistance that a dv/dt breakdown of the IGBT can be prevented, the IGBT can be prevented from being broken by an increase in dv/dt at a site (user site) to which the chip is supplied.
Abstract:
Channel regions and gate electrodes are also disposed continuously with transistor cells below a gate pad electrode. The transistor cells are formed in a stripe pattern and allowed to contact a source electrode. In this way, the channel regions and the gate electrodes, which are positioned below the gate pad electrode, are kept at a predetermined potential. Thus, a predetermined drain-source reverse breakdown voltage can be secured without providing a p+ type impurity region on the entire surface below the gate pad electrode.
Abstract:
Conventional power MOSFETs enables prevention of an inversion in a surrounding region surrounding the outer periphery of an element region by a wide annular layer and a wide sealed metal. Since, resultantly, the area of the surrounding region is large, increase in the element region has been restrained. A semiconductor device is hereby provided which has an inversion prevention region containing an MIS (MOS) structure. The width of polysilicon for the inversion prevention region is large enough to prevent an inversion since the area of an oxide film can be increased by the depth of the trench. By this, leakage current can be reduced even though the area of the region surrounding the outer periphery of the element region is not enlarged. In addition, since the element region is enlarged, on-state resistance of the MOSFET can be reduced.
Abstract:
In the present invention, in a pattern in which gate electrodes are provided in a stripe shape and source regions are provided in a ladder shape, body regions are provided in a stripe shape parallel to the gate electrodes. A first body region is exposed to a surface of a channel layer between first source regions adjacent to the gate electrode, and a second body region is provided below a second source region which connects the first source regions to each other. Thus, avalanche resistance can be improved. Moreover, since a mask for forming the body region is no longer required, there is a margin in accuracy of alignment.
Abstract:
Channel regions continuous with transistor cells are disposed also below a gate pad electrode. The channel region below the gate pad electrode is fixed to a source potential. Thus, a predetermined reverse breakdown voltage between a drain and a source is secured without forming a p+ type impurity region below the entire lower surface of the gate pad electrode. Furthermore, a protection diode is formed in a conductive layer disposed at the outer periphery of an operation region.
Abstract:
In a MOSFET, after an element region is formed, a wiring layer is formed subsequently to a barrier metal layer, and hydrogen annealing is performed. However, in the case of an n-channel MOSFET, a threshold voltage is lowered due to an occlusion characteristic of the barrier metal layer. Thus, an increased impurity concentration in a channel layer causes a problem that reduction in an on-resistance is inhibited. According to the present invention, after a barrier metal layer is formed, an opening is provided in the barrier metal layer on an interlayer insulating film, and hydrogen annealing treatment is performed after a wiring layer is formed. Thus, an amount of hydrogen which reaches a substrate is further increased, and lowering of a threshold voltage is suppressed. Moreover, since an impurity concentration in a channel layer can be lowered, an on-resistance is reduced.
Abstract:
A first electrode layer, which comes into contact with a source region, and a second electrode layer, which comes into contact with a body (back gate) region, are provided. The first and second electrode layers are insulated from each other and are extended in a direction different from an extending direction of a trench. It is possible to individually apply potentials to the first and second electrode layers, and to perform control for preventing a reverse current caused by a parasitic diode. Therefore, a bidirectional switching element can be realized by use of one MOSFET.
Abstract:
Channel regions continuous with transistor cells are disposed also below a gate pad electrode. The channel region below the gate pad electrode is fixed to a source potential. Thus, a predetermined reverse breakdown voltage between a drain and a source is secured without forming a p+ type impurity region below the entire lower surface of the gate pad electrode. Furthermore, a protection diode is formed in polysilicon with a stripe shape below the gate pad electrode.