Abstract:
Relative quantitative information about components of chemical or biological samples can be obtained from mass spectra by normalizing the spectra to yield peak intensity values that accurately reflect concentrations of the responsible species. A normalization factor is computed from peak intensities of those inherent components whose concentration remains constant across a series of samples. Relative concentrations of a component occurring in different samples can be estimated from the normalized peak intensities. Unlike conventional methods, internal standards or additional reagents are not required. The methods are particularly useful for differential phenotyping in proteomics and metabolomics research, in which molecules varying in concentration across samples are identified. These identified species may serve as biological markers for disease or response to therapy.
Abstract:
A turbo decoding method is provided which is capable of realizing high-speed and highly accurate decoding operations by improving initialization of path metric values for parallel decoding processing. Turbo encoded code data is divided into a first to an N-th sub-code blocks and parallel decoding processing on these sub-code blocks is performed. “A priori initialization processing unit”s are provided which employ an initial value for calculation of a path metric value of each sub-code block excluding the first sub-code block in a forward direction as a final calculated value in a preceding sub-code block and an initial value for calculation of a path metric value of each sub-code block excluding the N-th sub-code block in a backward direction as a final calculated value in a following sub-code block. After the a priori initialization processing of path metric values, parallel decoding processing on each sub-code block is performed.
Abstract:
The push-pull converter for zero-voltage switching of the switches on the primary side of the transformer to have a relatively lower loss is proposed. Which includes: a transformer having a primary winding with a center tap and a secondary winding, an electrical energy storage device having a first terminal coupled to the center tap of the primary winding and a second terminal coupled to a ground, a first switch having a first terminal coupled to a first terminal of the primary winding and a second terminal coupled to the ground, a second switch having a first terminal coupled to the ground and a second terminal coupled to a second terminal of the primary winding, and a rectifier circuit coupled to the secondary winding for transforming an AC output of the secondary winding to a DC output.
Abstract:
A communication apparatus includes two or more receiving units differing in characteristics. The apparatus further includes a data detecting unit detecting data to be received, in an input signal, and a selecting unit that selects one out of the two or more receiving units, depending upon detected result and characteristics of receiving units. In case data to be received is not contained in the input signal, the selecting unit selects a receiving unit whose power consumption during a period of time of not receiving the data is smaller than that of the other receiving unit(s) during a period of time of not receiving the data. In case the data to be received is contained in the input signal, the selecting unit selects a receiving unit from which a most satisfactory receiving quality is expected depending upon propagation environments of the input signal.
Abstract:
The second rate de-matching unit carries out a second rate de-matching step in parallel to each of two data defining the received data Rx for removing bits having been repeated in a second rate matching step having been carried out in a base station, or de-removing bits having been punctured in the second rate matching step having been carried out in a base station. The adders carry out a combining step in parallel in which data stored in the IR buffer is added to associated data among the two data. The first rate de-matching/turbo-decoding unit carries out a first rate de-matching step in which bits having been punctured in a first rate matching step having been carried out in a base station are repeated to data having been output from the input buffers, and simultaneously, repeatedly carries out a turbo-decoding step to the data.
Abstract:
Biomarkers useful for identifying treatments for and monitoring treatment of patients with multiple sclerosis (MS) are provided, as well as methods for their identification, methods of diagnosing MS, relapse of MS patients and disease progression in MS patients.
Abstract:
To provide a turbo decoding method capable of significantly improving efficiency of a determination as to whether or not to end decoding.If the decoding by a turbo decoder is started, a soft decision value of an element decoder is derived, and an ECR of a current frame is estimated from the soft decision value by an ECR criterion deriving portion. If determined to be an end as a result of an end determination of the decoding by the turbo decoder from a result of comparison with a last ECR value and the maximum number of times of repetition of decoding, a hard decision result and a decoding result are outputted, and if not determined to be the end, the number of times of repetition is counted up so as to repeat the above process.
Abstract:
The push-pull converter for zero-voltage switching of the switches on the primary side of the transformer to have a relatively lower loss is proposed. Which includes: a transformer having a primary winding with a center tap and a secondary winding, an electrical energy storage device having a first terminal coupled to the center tap of the primary winding and a second terminal coupled to a ground, a first switch having a first terminal coupled to a first terminal of the primary winding and a second terminal coupled to the ground, a second switch having a first terminal coupled to the ground and a second terminal coupled to a second terminal of the primary winding, and a rectifier circuit coupled to the secondary winding for transforming an AC output of the secondary winding to a DC output.
Abstract:
A sample preparation method is disclosed for volatilization and mass spectrometric analysis of nonvolatile high molecular weight molecules. Photoabsorbing molecules having significant sublimation rates at room temperature under vacuum, and preferably containing hydroxy functionalities, are disclosed for use as matrices in matrix-assisted laser desorption/ionization mass spectrometry. The samples are typically cooled in the mass spectrometer to temperatures significantly below room temperature.
Abstract:
A sample preparation method is disclosed for volatilization and mass spectrometric analysis of nonvolatile high molecular weight molecules. Photoabsorbing molecules having significant sublimation rates at room temperature under vacuum, and preferably containing hydroxy functionalities, are disclosed for use as matrices in matrix-assisted laser desorption/ionization mass spectrometry. The samples are typically cooled in the mass spectrometer to temperatures significantly below room temperature.