Abstract:
A signal structure for use in D2D communications is described. In one embodiment, a preamble for automatic gain control at the receiver end is included in the transmitted signal. Techniques for scheduling of D2D transmissions using carrier sensing multiple access (CSMA) and a power control schemes for interference management are also described.
Abstract:
A signal structure for use in D2D communications is described. In one embodiment, a preamble for automatic gain control at the receiver end is included in the transmitted signal. Techniques for scheduling of D2D transmissions using carrier sensing multiple access (CSMA) and a power control schemes for interference management are also described.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for handling signal quality measurements by a wireless device in a wireless network environment, particularly in a coordinated transmission environment. An apparatus may include computer-readable media having instructions and one or more processors coupled with the media and configured to execute the instructions to generate a power parameter corresponding to a power adjustment associated with a reference signal, provide the reference signal generated based in part on the generated power parameter to a wireless device, and provide the power parameter to transmission points operating in the coordinated transmission environment. Each of the transmission points may be configured to communicate the power parameter to the wireless device, and the wireless device may be configured to determine, based at least in part on the power parameter, a power characteristics associated with a channel in which the reference signal is provided.
Abstract:
A user equipment device comprises physical layer circuitry configured to communicate radio frequency (RF) electrical signals directly with one or more separate wireless devices, including to receive an indication of multiple component carriers aggregated into a carrier set that includes at least one scheduling component carrier and at least one scheduled component carrier, and receive scheduling control information for the multiple component carriers of the carrier set using the scheduling component carrier in downlink control information according to a resource radio control signaling protocol.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for handling signal quality measurements by a wireless device in a wireless network environment, particularly in a coordinated transmission environment. An apparatus way include computer-readable media having instructions and one or more processors coupled with the media and configured to execute the instructions to generate a power parameter corresponding to a power adjustment associated with a reference signal, provide the reference signal generated based in part on the generated power parameter to a wireless device, and provide the power parameter to transmission points operating in the coordinated transmission environment. Each of the transmission points may be configured to communicate the power parameter to the wireless device, and the wireless device may be configured to determine, based at least in part on the power parameter, a power characteristics associated with a channel in which the reference signal is provided.
Abstract:
User Equipment (UE) and base station (eNB) apparatus and methodology for radio resource management reporting. The UE receives reference signals from at least one antenna port of an eNB via a plurality of receive antennas of the UE. The UE performs received signal measurement of at least a portion of the reference signals for a plurality of eNB antenna port and UE receive antenna combinational groupings to produce enhanced received signal quality (eRSQ) measurements that represent spatial characteristics of the reference signaling as received by the UE. The UE may send a report to the eNB based on the eRSQ measurements, with the report being indicative of spatial multiplexing layer availability of the UE to be served by the eNB.
Abstract:
A UE can include processing circuitry coupled to memory. To configure the UE for semi-persistent scheduling (SPS) transmission or a grant-free transmission, the processing circuitry is to decode RRC signaling from a base station, the RRC signaling configuring a plurality of transmission configuration information (TCI) candidates indicating a first set of transmission beams for an initial transmission on an SPS PDSCH. The initial transmission uses an initial transmission beam that is selected based on a TCI beam index. A MAC CE from the base station is decoded, the MAC CE indicating a re-configuration of the plurality of TCI candidates to include at least a second set of transmission beams for the SPS PDSCH. A transmission beam is selected from the second set of transmission beams based on the TCI beam index. Downlink data received in a subsequent transmission via the selected transmission beam on the SPS PDSCH is decoded.
Abstract:
A user equipment (UE) can include processing circuitry coupled to memory. To configure the UE for New Radio (NR) communications above a 52.6 GHz carrier frequency, the processing circuitry is to decode radio resource control (RRC) signaling to obtain a cyclic shift value in time domain. The cyclic shift value is associated with a demodulation reference signal (DM-RS) antenna port (AP) of a plurality of available DM-RS APs. A single carrier based waveform DM-RS sequence corresponding to the DM-RS AP is generated using a base sequence and the cyclic shift value. The single carrier based waveform DM-RS sequence is encoded with uplink data for transmission to a base station using a physical uplink shared channel (PUSCH) using a carrier above the 52.6 GHz carrier frequency.
Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
Described herein are methods and apparatus for jointly encoding components of a a channel state information (CSI) report into a single codeword. Padding bits are added to equalize payload size for different CRI/RI cases and to allow encoding of all parts of CSI into one codeword without payload ambiguity.