Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. An IGZO channel layer is formed above the gate electrode. A contact layer is formed above the IGZO channel layer. The contact layer includes arsenic. A source electrode and a drain electrode are formed above the contact layer.
Abstract:
Solar cells and methods for forming a back contact layer for a solar cell are disclosed. The methods comprise depositing a first layer comprising a conductor on a substrate, depositing a second layer on the first layer, the second layer comprising between about 1 nm and about 25 nm of a metal chalcogenide, and forming a third layer operable as an absorber layer on the second layer. The absorber layer can comprise a photoactive semiconductor layer. In some embodiments, the absorber layer comprises a chalcogenide of copper-indium-gallium. In some embodiments, the absorber layer comprises a chalcogenide of copper-zinc-tin. In some embodiments, the absorber layer comprises CdTe. In some embodiments, the metal comprises Mo, W or Ta. In some embodiments, the metal comprises Mo. In some embodiments, the chalcogenide comprises S or Se or a combination thereof.
Abstract:
SiC substrates are cleaned and provided to a process chamber. In-situ plasma surface treatments are applied to further clean the surface of the substrate. A dielectric interface layer is deposited in-situ to passivate the surface. Metal layers having a low work function are deposited above the dielectric interface layer. The stack is annealed at about 500C in forming gas to form low resistivity ohmic contacts to the SiC substrate. SiC substrates are cleaned and provided to a process chamber. In-situ plasma surface treatments are applied to further clean the surface of the substrate. A silicon oxide dielectric interface layer is deposited in-situ to passivate the surface. Optional plasma surface treatments are applied to further improve the performance of the silicon oxide dielectric interface layer. An aluminum oxide gate dielectric layer is deposited above the silicon oxide dielectric interface layer.
Abstract:
Methods are provided for the deposition of high-k gate dielectric materials which are doped with fluorine and/or nitrogen to improve the performance and reliability. The high-k dielectric materials may include at least one of hafnium oxide, hafnium silicon oxide, hafnium aluminum oxide, zirconium oxide, zirconium silicon oxide, zirconium aluminum oxide, titanium oxide, titanium silicon oxide, or titanium aluminum oxide. The fluorine dopant is provided from a layer including titanium nitride or amorphous silicon, where the layer is doped with at least one of fluorine or nitrogen. The dopants diffuse into the high-k dielectric material during a subsequent anneal process.
Abstract:
Provided are methods of high productivity combinatorial (HPC) inspection of semiconductor substrates. A substrate includes two layers of dissimilar materials interfacing each other, such as a stack of a silicon bottom layer and an indium gallium arsenide top layer. The dissimilar materials have one or more of thermal, structural, and lattice mismatches. As a part of the inspection, the top layer is etched in a combinatorial manner. Specifically, the top layer is divided into multiple different site-isolated regions. One such region may be etched using different process conditions from another region. Specifically, etching temperature, etching duration and/or etchant composition may vary among the site-isolated regions. After combinatorial etching, each region is inspected to determine its etch-pit density (EPD) value. These values may be then analyzed to determine an overall EPD value for the substrate, which may involve discarding EPD values for over-etched and under-etched regions.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. A seed layer is formed above the substrate. The seed layer has a crystalline structure that is substantially dominant along the c-axis. An IGZO layer is formed above the seed layer. The seed layer may include zinc oxide. A stack of alternating seed layers and IGZO layers may be formed.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. An IGZO channel layer is formed above the gate electrode. The IGZO channel layer has a first sub-layer including c-IGZO and a second sub-layer including a-IGZO. A source electrode and a drain electrode are formed above the IGZO channel layer.
Abstract:
Embodiments provided herein describe high-k dielectric layers and methods for forming high-k dielectric layers. A substrate is provided. The substrate includes a semiconductor material. The substrate is exposed to a hafnium precursor. The substrate is exposed to a zirconium precursor. The substrate is exposed to an oxidant only after the exposing of the substrate to the hafnium precursor and the exposing of the substrate to the zirconium precursor. The exposing of the substrate to the hafnium precursor, the exposing of the substrate to the zirconium precursor, and the exposing of the substrate to the oxidant causes a layer to be formed over the substrate. The layer includes hafnium, zirconium, and oxygen.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. An IGZO channel layer is formed above the gate electrode. The IGZO channel layer has a first sub-layer including crystalline IGZO, a second sub-layer including amorphous IGZO, and a third sub-layer including magnesium and zinc. A source electrode and a drain electrode are formed above the IGZO channel layer.
Abstract:
Embodiments described herein provide method for forming crystalline indium-gallium-zinc oxide (IGZO). A substrate is provided. A seed layer is formed above the substrate. The seed layer has a crystalline structure that is substantially dominant along the c-axis. An IGZO layer is formed above the seed layer. The seed layer may include zinc oxide. A stack of alternating seed layers and IGZO layers may be formed.