Abstract:
Provided are methods of forming low resistivity contacts. Also provided are devices having such low resistive contacts. A method may include doping the surface of a structure, such as a gallium nitride layer. Specifically, a dopant containing layer is formed on the surface of the structure using, for example, atomic layer deposition (ALD). The dopant may magnesium. In some embodiments, the dopant containing layer also includes nitrogen. A capping layer may be then formed over the dopant containing layer to prevent dopant desorption. The stack including the structure with the dopant containing layer disposed on its surface is then annealed to transfer dopant from the dopant containing layer into the surface. After annealing, any remaining dopant containing layer is removed. When another component is later formed over the surface, a low resistivity contact is created between this other component and the doped structure.
Abstract:
Embodiments provided herein describe systems and methods for forming semiconductor devices. A semiconductor substrate is provided. The semiconductor substrate is exposed to bromine radicals, hydrogen radicals, or a combination thereof. An oxide layer is formed above the semiconductor substrate. The semiconductor substrate is held within a controlled atmosphere at least from the completion of the exposing of the semiconductor substrate to bromine radicals, hydrogen radicals, or a combination thereof and the beginning of the forming of the oxide layer.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. A gate dielectric layer is formed above the gate electrode. An interface layer is formed above the gate dielectric material. An IGZO channel layer is formed above the interface layer. A source electrode and a drain electrode are formed above the IGZO channel layer. The interface layer includes a material different than that of the gate dielectric layer and the IGZO channel layer.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. An IGZO channel layer is formed above the gate electrode. The IGZO channel layer has a first sub-layer including c-IGZO and a second sub-layer including a-IGZO. A source electrode and a drain electrode are formed above the IGZO channel layer.
Abstract:
Provided are field effect transistor (FET) assemblies and methods of forming thereof. An FET assembly may include a dielectric layer formed from tantalum silicon oxide and having the atomic ratio of silicon to tantalum and silicon (Si/(Ta+Si)) of less than 5% to provide a low trap density. The dielectric layer may be disposed over an interface layer, which is disposed over a channel region. The same type of the dielectric layer may be used a common gate dielectric of an nMOSFET (e.g., III-V materials) and a pMOSFET (e.g., germanium). The channel region may include one of indium gallium arsenide, indium phosphate, or germanium. The interface layer may include silicon oxide to provide a higher energy barrier. The dielectric layer may be formed using an atomic layer deposition technique by adsorbing both tantalum and silicon containing precursors on the deposition surface and then oxidizing both precursors in the same operation.
Abstract:
Contacts for semiconductor devices and methods of making thereof are disclosed. A method comprises forming a first layer on a semiconductor, the first layer comprising one or more metals; forming a second layer on the first layer, the second layer comprising the one or more metals, nitrogen and oxygen; and heating the first and second layer such that oxygen migrates from the second layer into the first layer and the first layer comprises a sub-stoichiometric metal oxide after heating. Exemplary embodiments use transition metals such as Ti in the first layer. After heating there is a sub-stoichiometric oxide layer of about 2.5 nm thickness between a metal nitride conductor and the semiconductor. The specific contact resistivity is less than about 7×10−9 Ω·cm2.
Abstract:
Embodiments described herein provide amorphous silicon thin-film transistors (a-Si TFTs) and methods for forming a-Si TFTs. A substrate is provided. A gate electrode is formed above the substrate. An a-Si channel layer is formed above the gate electrode. A contact layer is formed above the a-Si channel layer. The contact layer includes titanium, zinc, arsenic, or a combination thereof. A source electrode and a drain electrode are formed above the contact layer.
Abstract:
Embodiments provided herein describe high-k dielectric layers and methods for forming high-k dielectric layers. A substrate is provided. The substrate includes a semiconductor material. The substrate is exposed to a hafnium precursor. The substrate is exposed to a zirconium precursor. The substrate is exposed to an oxidant only after the exposing of the substrate to the hafnium precursor and the exposing of the substrate to the zirconium precursor. The exposing of the substrate to the hafnium precursor, the exposing of the substrate to the zirconium precursor, and the exposing of the substrate to the oxidant causes a layer to be formed over the substrate. The layer includes hafnium, zirconium, and oxygen.
Abstract:
Contacts for semiconductor devices and methods of making thereof are disclosed. A method comprises forming a first layer on a semiconductor, the first layer comprising one or more metals; forming a second layer on the first layer, the second layer comprising the one or more metals, nitrogen and oxygen; and heating the first and second layer such that oxygen migrates from the second layer into the first layer and the first layer comprises a sub-stoichiometric metal oxide after heating. Exemplary embodiments use transition metals such as Ti in the first layer. After heating there is a sub-stoichiometric oxide layer of about 2.5 nm thickness between a metal nitride conductor and the semiconductor. The specific contact resistivity is less than about 7×10−9 Ω·cm2.
Abstract:
Embodiments described herein provide indium-gallium-zinc oxide (IGZO) devices, such as IGZO thin-film transistors (TFTs), and methods for forming such devices. A substrate is provided. A gate electrode is formed above the substrate. A gate dielectric layer is formed above the gate electrode. An interface layer is formed above the gate dielectric material. An IGZO channel layer is formed above the interface layer. A source electrode and a drain electrode are formed above the IGZO channel layer. The interface layer includes a material different than that of the gate dielectric layer and the IGZO channel layer.