Abstract:
A robotic system has a plurality of user selectable operating modes. To select one of the operating modes, a user performs a distinguishing action which uniquely identifies a desired operating mode among the plurality of user selectable operating modes. A method implemented by a processor in the robotic system identifies the distinguishing action and places the robotic system in the user selected operating mode.
Abstract:
Systems and methods for minimally invasive computer-assisted telesurgery are described. For example, this disclosure provides surgical instruments and instrument drive systems for computer-assisted tele-operated surgery that are structured and operated to negate the effects of cable stretch within the surgical instruments.
Abstract:
A surgical system includes a link of a manipulator arm and a telescoping cannula mount assembly. The link includes a curved end. The telescoping cannula mount assembly is positioned in the curved end of the link. The telescoping cannula mount assembly includes a curved cannula mount arm. In a first state, the curved cannula mount arm is parked within the curved end of the link. In a second state, the curved cannula mount arm extends from the curved end of the link and is locked in an extended position. The telescoping cannula mount assembly also includes a mechanical arm retraction system. The mechanical arm retraction system couples the curved cannula mount arm to the curved end of the link. The mechanical arm retraction system is configured to automatically move the curved cannula mount arm from the second state to the first state.
Abstract:
To perform a tool exchange in a medical robotic system, tool is retracted back into an entry guide from a deployed position and pose so that an assistant in the operating room may replace it with a different tool. While the tool is being retracted back towards the entry guide by user action, its configuration is changed to an entry pose while avoiding collisions with other objects so that it may fit in the entry guide. After the tool exchange is completed, a new tool is inserted in the entry guide and extended out of the guide by user action to the original position of the old tool prior to its retraction into the entry guide while the tool's controller assists the user by reconfiguring the new tool so as to resemble the original deployed pose of the old tool prior to its retraction into the entry guide.
Abstract:
An instrument manipulator and a robotic surgical system including an instrument manipulator are provided. In one embodiment, an instrument manipulator includes a plurality of independent actuator drive modules, each of the plurality of actuator drive modules including an actuator output, wherein each of the actuator outputs are configured to independently actuate a corresponding actuator input of a surgical instrument without force input from another actuator output. The instrument manipulator further includes a frame housing the plurality of independent actuator drive modules, the frame including a distal end from which each of the actuator outputs distally protrude for engaging the corresponding actuator inputs of the surgical instrument.
Abstract:
An entry guide tube and cannula assembly, a surgical system including the assembly, and a method of surgical instrument insertion are provided. In one embodiment, the assembly includes a cannula having a proximal portion that operably couples to an accessory clamp of a manipulator arm, and a distal tubular member coupled to the proximal portion, the tubular member having an opening for passage of at least one instrument shaft. The assembly also includes an entry guide tube rotatably coupled to the proximal portion of the cannula, the entry guide tube including a plurality of channels for passage of a plurality of instrument shafts, wherein the entry guide tube is rotatably driven relative to the proximal portion of the cannula by rotation of at least one instrument shaft about a longitudinal axis of the entry guide tube.
Abstract:
A robotic system has a plurality of user selectable operating modes. To select one of the operating modes, a user performs a distinguishing action which uniquely identifies a desired operating mode among the plurality of user selectable operating modes. A method implemented by a processor in the robotic system identifies the distinguishing action and places the robotic system in the user selected operating mode.
Abstract:
A computer-assisted medical system includes robotic manipulators, a user input system operable to generate signals to control the manipulators, and a controller configured to execute instructions to perform operations. A portion of the user input system is movable relative to the plurality of manipulators. The operations include, in a pairing mode, associating a first manipulator of the plurality of manipulators with the portion of the user input system based on movement of the portion of the user input system relative to the first manipulator, and, in a following mode, controlling motion of the first manipulator in accordance with an indication generated by the user input system in response to operation of the portion of the user input system by a user.
Abstract:
A drape includes a first drape portion configured to receive a manipulator arm of a surgical system and a pocket coupled to a distal portion of the first drape portion. The pocket is configured to receive a manipulator of the surgical system. The pocket includes a flexible membrane positionable between an output of the manipulator and an input of a surgical instrument mountable to the manipulator. In some embodiments, the flexible membrane is located at a distal end of the pocket. In some embodiments, the flexible membrane is configured to allow an actuating force to be transmitted from the output of the manipulator to the input of the surgical instrument. In some embodiments, the pocket provides a sterile barrier between the manipulator and the surgical instrument. In some embodiments, the drape further includes a rotatable seal configured to couple a proximal opening of the pocket to the first drape portion.
Abstract:
A teleoperated manipulator system includes a manipulator assembly and a tool actuation assembly coupled to the manipulator assembly. The tool actuation assembly inserts a tool, such as a surgical instrument, along an insertion axis and also rotates the tool around the insertion axis. The manipulator assembly includes an arm that rotates with reference to a mounting base to rotate the tool around a yaw axis that intersects the insertion axis. A distal portion of the arm defines an arcuate pitch arc, and a center of the pitch arc is coincident with the intersection of the insertion axis and the yaw axis. The tool actuation assembly is driven along the pitch arc to pitch the tool. The manipulator system is optionally a telesurgical system, and the tool is optionally a therapeutic, diagnostic, or imaging surgical instrument.