摘要:
An electronic device having a conductive substrate via extending between a conductor on a rear face and a conductor over a front face of the substrate includes a multi-layered etch-stop beneath the front surface conductor. The etch-stop permits use of a single etchant to penetrate both the substrate and any overlying semiconductor and/or dielectric without attacking the overlying front surface conductor. This is especially important when the semiconductor and dielectric are so thin as to preclude changing etchants when these regions are reached during etching. The etch-stop is preferably a stack of N≧2 pairs of sub-layers, where a first sub-layer comprises stress relieving and/or adhesion promoting material (e.g., Ti), and the second sub-layer comprises etch resistant material (e.g., Ni). In a further embodiment, where the device includes field effect transistors having feedback sensitive control gates, the etch-stop material is advantageously used to form gate shields.
摘要:
A semiconductor device includes a substrate comprising a heterostructure configured to support formation of a channel during operation, first and second dielectric layers supported by the substrate, the second dielectric layer being disposed between the first dielectric layer and the substrate, a gate supported by the substrate, disposed in a first opening in the first dielectric layer, and to which a bias voltage is applied during operation to control current flow through the channel, the second dielectric layer being disposed between the gate and the substrate, and an electrode supported by the substrate, disposed in a second opening in the first and second dielectric layers, and configured to establish a Schottky junction with the substrate.
摘要:
Embodiments include semiconductor devices with low leakage Schottky contacts. An embodiment is formed by providing a partially completed semiconductor device including a substrate, a semiconductor on the substrate, and a passivation layer on the semiconductor, and using a first mask, locally etching the passivation layer to expose a portion of the semiconductor. Without removing the first mask, a Schottky contact is formed of a first material on the exposed portion of the semiconductor, and the first mask is removed. Using a further mask, a step-gate conductor of a second material electrically coupled to the Schottky contact is formed overlying parts of the passivation layer adjacent to the Schottky contact. By minimizing the process steps between opening the Schottky contact window in the passivation layer and forming the Schottky contact material in this window, the gate leakage of a resulting field effect device having a Schottky gate may be substantially reduced.
摘要:
An electronic device having a conductive substrate via extending between a conductor on a rear face and a conductor over a front face of the substrate includes a multi-layered etch-stop beneath the front surface conductor. The etch-stop permits use of a single etchant to penetrate both the substrate and any overlying semiconductor and/or dielectric without attacking the overlying front surface conductor. This is especially important when the semiconductor and dielectric are so thin as to preclude changing etchants when these regions are reached during etching. The etch-stop is preferably a stack of N≧2 pairs of sub-layers, where a first sub-layer comprises stress relieving and/or adhesion promoting material (e.g., Ti), and the second sub-layer comprises etch resistant material (e.g., Ni). In a further embodiment, where the device includes field effect transistors having feedback sensitive control gates, the etch-stop material is advantageously used to form gate shields.
摘要:
Semiconductor devices (61) and methods (80-89, 100) are provided with dual passivation layers (56, 59). A semiconductor layer (34) is formed on a substrate (32) and covered by a first passivation layer (PL-1) (56). PL-1 (56) and part (341) of the semiconductor layer (34) are etched to form a device mesa (35). A second passivation layer (PL-2) (59) is formed over PL-1 (56) and exposed edges (44) of the mesa (35). Vias (90, 92, 93) are etched through PL-1 (56) and PL-2 (59) to the semiconductor layer (34) where source (40), drain (42) and gate are to be formed. Conductors (41, 43, 39) are applied in the vias (90, 92, 93) for ohmic contacts for the source-drain (40, 42) and a Schottky contact (39) for the gate. Interconnections (45, 47) over the edges (44) of the mesa (35) couple other circuit elements. PL-1 (56) avoids adverse surface states (52) near the gate and PL-2 (59) insulates edges (44) of the mesa (35) from overlying interconnections (45, 47) to avoid leakage currents (46). An opaque alignment mark (68) is desirably formed at the same time as the device (61) to facilitate alignment when using transparent semiconductors (34).
摘要:
A microwave field effect transistor (10) has a high conductivity gate (44) overlying a double heterojunction structure (14, 18, 22) that has an undoped channel layer (18). The heterojunction structure overlies a substrate (12). A recess layer that is a not intentionally doped (NID) layer (24) overlies the heterojunction structure and is formed with a predetermined thickness that minimizes impact ionization effects at an interface of a drain contact of source/drain ohmic contacts (30) and permits significantly higher voltage operation than previous step gate transistors. Another recess layer (26) is used to define a gate dimension. A Schottky gate opening (42) is formed within a step gate opening (40) to create a step gate structure. A channel layer (18) material of InxGa1−xAs is used to provide a region of electron confinement with improved transport characteristics that result in higher frequency of operation, higher power density and improved power-added efficiency.
摘要翻译:微波场效应晶体管(10)具有覆盖具有未掺杂沟道层(18)的双异质结结构(14,18,22)的高导电性栅极(44)。 异质结结构覆盖在基板(12)上。 作为非有意掺杂(NID)层(24)的凹陷层覆盖在异质结结构上并形成预定的厚度,使得在源极/漏极欧姆接触(30)的漏极接触的界面处的冲击电离效应最小化并允许 比上一级栅晶体管显着更高的电压操作。 另一个凹陷层(26)用于限定门尺寸。 肖特基门开口(42)形成在步进门开口(40)内以形成阶梯门结构。 使用In x Ga 1-x As的沟道层(18)材料来提供具有改善的传输特性的电子约束区域,这导致更高的操作频率,更高的功率密度和更好的功率附加效率。
摘要:
An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.
摘要:
A semiconductor device includes a substrate comprising a heterostructure configured to support formation of a channel during operation, first and second dielectric layers supported by the substrate, the second dielectric layer being disposed between the first dielectric layer and the substrate, a gate supported by the substrate, disposed in a first opening in the first dielectric layer, and to which a bias voltage is applied during operation to control current flow through the channel, the second dielectric layer being disposed between the gate and the substrate, and an electrode supported by the substrate, disposed in a second opening in the first and second dielectric layers, and configured to establish a Schottky junction with the substrate.
摘要:
A low leakage current transistor (2) is provided which includes a GaN-containing substrate (11-14) covered by a passivation surface layer (17) in which a T-gate electrode with sidewall extensions (20) is formed and coated with a multi-level passivation layer (30-32) which includes an intermediate etch stop layer (31) which is used to define a continuous multi-region field plate (33) having multiple distances between the bottom surface of the field plate 33 and the semiconductor substrate in the gate-drain region of the transistor.
摘要:
An electronic device (50) having a conductive substrate via (70) extending between a conductor (39) on a rear face (22) and a conductor (58) over the front surface (23) of the substrate (21) includes a multi-layered etch-stop (56, 56-2) beneath the front surface conductor (58). The etch-stop (56, 56-2) permits use of a single etchant to penetrate both the substrate (21) and any overlying semiconductor (44) and/or dielectric (34) without attacking the overlying front surface conductor (58). This is especially important when the semiconductor (44) and dielectric (34) are so thin as to preclude changing etchants when these regions are reached during etching. The etch-stop (56) is preferably a stack (63, 73) of N≧2 pairs (62-i) of sub-layers (62-i1, 62-i2) in either order, where a first sub-layer (62-i1) comprises stress relieving and/or adhesion promoting material (e.g., Ti), and the second sub-layer (62-i2) comprises etch resistant material (e.g., Ni). In a further embodiment, where the device (50) includes field effect transistors (52) having feedback sensitive control gates (30), the etch-stop material (56) is advantageously used to form gate shields (76).