摘要:
A memcapacitor device includes a memcapacitive matrix interposed between a first electrode and a second electrode. The memcapacitive matrix includes deep level dopants having a first decay time constant and shallow level dopants having a second decay time constant. The second decay time constant is substantially shorter than the first decay time constant. The capacitance of the memcapacitor device depends upon an initial voltage applied across the memcapacitive matrix and a time dependent change in capacitance of the memcapacitor device depends upon the first decay time constant. A method for forming a memcapacitive device is also provided.
摘要:
Embodiments of the present invention are directed to reconfigurable two-terminal electronic switch devices (100) comprising a compound (102) sandwiched between two electrodes (104,106). These devices are configured so that the two electrode/compound interface regions can be either rectifying or conductive, depending on the concentration of dopants at the respective interface, which provides four different device operating characteristics. By forcing charged dopants into or out of the interface regions with an applied electric field pulse, a circuit element can be switched from one type of stable operation to another in at least three different ways. A family of devices built to express these properties display behaviors that provide new opportunities for nanoscale electronic devices.
摘要:
A memristive switch device can comprise a switch formed between a first electrode and a second electrode, where the switch includes a memristive layer and a select layer directly adjacent the memristive layer. The select layer blocks current to the memristive layer over a symmetric bipolar range of subthreshold voltages applied between the first and second electrodes.
摘要:
A memory array with Metal-Insulator Transition (MIT) switching devices includes a set of row lines intersecting a set of column lines and a memory element disposed at an intersection between one of the row lines and one of the column lines. The memory element includes a switching layer in series with an MIT material. A method of accessing a target memory element within a memory array includes applying half of an access voltage to a row line connected to the target memory element, the target memory element comprising a switching layer in series with an MIT material, and applying an inverted half of the access voltage to a column line connected to the target memory element.
摘要:
Memristor systems and method for fabricating memristor system are disclosed. In one aspect, a memristor includes a first electrode, a second electrode, and a junction disposed between the first electrode and the second electrode. The junction includes at least one layer such that each layer has a plurality of dopant sub-layers disposed between insulating sub-layers. The sub-layers are oriented substantially parallel to the first and second electrodes.
摘要:
A memristor with a controlled electrode grain size includes an adhesion layer, a first electrode having a first surface contacting the adhesion layer and a second surface opposite the first surface, in which the first electrode is formed of an alloy of a base material and at least one second material, and in which the alloy has a relatively smaller grain size than a grain size of the base material. The memristor also includes a switching layer positioned adjacent to the second surface of the first electrode and a second electrode positioned adjacent to the switching layer.
摘要:
A device (10) may include a semiconductor layer section (25) and a memory layer section (45) disposed above the semiconductor layer section (25). The semiconductor layer section (25) may include a processor (12; 412) and input/output block (16; 416), and the memory layer section (45) may include memristive memory (14; 300). A method of forming such device (10), and an apparatus (600) including such device (10) are also disclosed. Other embodiments are described and claimed.
摘要:
In one example, an oxide-based negative differential resistance comparator circuit includes a composite NDR device that includes a first electrode, a first thin film oxide-based negative differential resistance (NDR) layer in contact with the first electrode and a central conductive portion. The composite NDR device also includes a second thin film oxide-based NDR layer disposed adjacent to the first NDR layer and a second electrode. A resistor may be placed in series with the composite NDR device and an electrical energy source can apply applying a voltage across the first electrode and second electrode. The composite NDR device produces a threshold based comparator functionality in the comparator circuit.
摘要:
A nonlinear memristor includes a bottom electrode, a top electrode, and an insulator layer between the bottom electrode and the top electrode. The insulator layer comprises a metal oxide. The nonlinear memristor further includes a switching channel within the insulator layer, extending from the bottom electrode toward the top electrode, and a nano-cap layer of a metal-insulator-transition material between the switching channel and the top electrode. The top electrode comprises the same metal as the metal in the metal-insulator-transition material.
摘要:
An electrical circuit component includes a first electrode, a plurality of second electrodes and a negative differential resistance (NDR) material. The first electrode and the plurality of second electrodes are connected to the NDR material and the NDR material is to electrically connect the first electrode to one of the plurality of second electrodes when a sufficient voltage is applied between the first electrode and the one of the plurality of second electrodes through the NDR material.