Negative dielectric constant material based on ion conducting materials
    12.
    发明授权
    Negative dielectric constant material based on ion conducting materials 有权
    基于离子导电材料的负介电常数材料

    公开(公告)号:US08696940B2

    公开(公告)日:2014-04-15

    申请号:US12893289

    申请日:2010-09-29

    IPC分类号: H01B1/06

    摘要: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

    摘要翻译: 由于其特有的和异乎寻常的电磁特性,超材料或人造负指数材料(NIM)引起了极大的关注。 通过将离子掺杂到聚合物质子化的聚(苯并咪唑)(PBI)中,开发了一种示例性的负介电常数材料,其是产生NIM的关键。 掺杂的PBI由于其降低的等离子体频率和诱导效应而以兆赫(MHz)频率显示出负的介电常数。 负介电常数和谐振频率的大小可以通过掺杂浓度来调节。 高掺杂的PBI在较高的谐振频率下的负介电常数绝对值大于掺杂较少的PBI。

    Nanocomposites from stable dispersions of carbon nanotubes in polymeric matrices using dispersion interaction
    13.
    发明申请
    Nanocomposites from stable dispersions of carbon nanotubes in polymeric matrices using dispersion interaction 有权
    使用分散相互作用从碳纳米管在聚合物基质中稳定分散的纳米复合材料

    公开(公告)号:US20080275172A1

    公开(公告)日:2008-11-06

    申请号:US11644019

    申请日:2006-12-22

    IPC分类号: C08K3/00

    摘要: Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

    摘要翻译: 碳纳米管(CNTs)在聚合物基质中的稳定分散体包括分散在其单体具有离域电子轨道的主体聚合物或共聚物中的CNT,使得在主体聚合物或共聚物与分散在其中的CNT之间产生分散相互作用。 通过标准方法通过标准方法制备纳米复合材料,其以体积呈现,或当制成膜,纤维,泡沫,涂层,粘合剂,糊剂或模塑时,由CNT在聚合物基质中的稳定分散体采用分散相互作用,如 如上所述。

    Nanocomposites from stable dispersions of carbon nanotubes in polymeric matrices using dispersion interaction
    14.
    发明授权
    Nanocomposites from stable dispersions of carbon nanotubes in polymeric matrices using dispersion interaction 有权
    使用分散相互作用从碳纳米管在聚合物基质中稳定分散的纳米复合材料

    公开(公告)号:US09493635B2

    公开(公告)日:2016-11-15

    申请号:US11644019

    申请日:2006-12-22

    IPC分类号: B82Y30/00 C08K7/24

    摘要: Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

    摘要翻译: 碳纳米管(CNTs)在聚合物基质中的稳定分散体包括分散在其单体具有离域电子轨道的主体聚合物或共聚物中的CNT,使得在主体聚合物或共聚物与分散在其中的CNT之间产生分散相互作用。 通过标准方法通过标准方法制备纳米复合材料,其以体积呈现,或当制成膜,纤维,泡沫,涂层,粘合剂,糊剂或模塑时,由CNT在聚合物基质中的稳定分散体采用分散相互作用,如 如上所述。

    Negative Dielectric Constant Material Based on Ion Conducting Materials
    16.
    发明申请
    Negative Dielectric Constant Material Based on Ion Conducting Materials 有权
    基于离子导电材料的负介电常数材料

    公开(公告)号:US20110105293A1

    公开(公告)日:2011-05-05

    申请号:US12893289

    申请日:2010-09-29

    摘要: Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped FBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

    摘要翻译: 由于其特有的和异乎寻常的电磁特性,超材料或人造负指数材料(NIM)引起了极大的关注。 通过将离子掺杂到聚合物质子化的聚(苯并咪唑)(PBI)中,开发了一种示例性的负介电常数材料,其是产生NIM的关键。 掺杂的PBI由于其降低的等离子体频率和诱导效应而以兆赫(MHz)频率显示出负的介电常数。 负介电常数和谐振频率的大小可以通过掺杂浓度来调节。 高掺杂的FBI在较高的谐振频率下显示出更大的负介电常数绝对值,而不是较少掺杂的PBI。

    Nanotubular toughening inclusions
    17.
    发明授权
    Nanotubular toughening inclusions 有权
    纳米管增韧夹杂物

    公开(公告)号:US09074066B2

    公开(公告)日:2015-07-07

    申请号:US13032045

    申请日:2011-02-22

    摘要: Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.

    摘要翻译: 常规增韧剂通常是橡胶状材料或小分子量分子,其主要牺牲基质的固有性质,例如作为副作用的模量,强度和热稳定性。 另一方面,高模量夹杂物倾向于非常有效地增强弹性模量,但是强度非常好。 例如,具有无机夹杂物的机械增强剂常常降低复合材料的韧性,遇到由碎片和裂纹引起的频繁的灾难性脆性破坏。 因此,增韧通常与机械加强冲突。 碳纳米管由于其非凡的机械,电气和热性能的组合,已经在各种应用中用作有效的增强剂。 此外,纳米管可以延伸超过20%而不产生或破裂,并且在变形期间吸收大量的能量,这使得它们也可以是有效的增​​韧剂,以及优异的增强夹杂物。 因此,通过将纳米管状夹杂物结合到主体基质如热固性和热塑性聚合物或陶瓷中而不会对基体的固有物理性质产生不利影响,提供了改进的增韧方法。

    Carbon Nanotube Electrodes and Method for Fabricating Same for Use in Biofuel Cell and Fuel Cell Applications
    19.
    发明申请
    Carbon Nanotube Electrodes and Method for Fabricating Same for Use in Biofuel Cell and Fuel Cell Applications 审中-公开
    碳纳米管电极及其制造方法,用于生物燃料电池和燃料电池应用

    公开(公告)号:US20090136828A1

    公开(公告)日:2009-05-28

    申请号:US12272830

    申请日:2008-11-18

    IPC分类号: H01M4/02 H01M4/88

    摘要: Carbon nanotubes (CNTs) are mixed in an aqueous buffer solution that includes a buffer material having a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group. The resulting solution includes the CNTs dispersed therein. Metal-core ferritins are then mixed into the resulting solution where at least a portion of the ferritins are coupled to the CNTs.

    摘要翻译: 碳纳米管(CNT)在含有缓冲材料的缓冲水溶液中混合,所述缓冲材料具有由第一末端,第二末端以及设置在第一和第二末端之间的中间部分所限定的分子结构。 第一端是具有氮和氧的杂原子的环状环,中间是疏水性烷基链,第二端是带电基团。 所得溶液包括分散在其中的CNT。 然后将金属铁心蛋白混合到所得溶液中,其中至少一部分铁素体与CNT相连。

    Boron Nitride Nanotubes
    20.
    发明申请
    Boron Nitride Nanotubes 有权
    氮化硼纳米管

    公开(公告)号:US20090117021A1

    公开(公告)日:2009-05-07

    申请号:US12152414

    申请日:2008-05-14

    IPC分类号: C01B21/064 B01J19/12

    摘要: Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

    摘要翻译: 氮化硼纳米管是通过以下工艺制备的,该方法包括:(a)产生硼蒸汽源; (b)将硼蒸气与氮气混合,使得硼蒸气和氮气的混合物存在于作为表面的成核位置,氮气以高于大气压的压力提供,例如从大于约 2个大气压至250个大气压; 和(c)收获在成核部位形成的氮化硼纳米管。