Abstract:
A CML digital circuit includes a load coupled between a power supply node and at least one output node and a logic circuit component coupled to the output node. The logic circuit component has at least one data input node. The logic circuit component comprises a first circuit module and a second circuit module. A first tail current source is coupled to the first circuit module. A second tail current source is coupled to the second circuit module. A first switch is coupled between the power supply node and the first tail current source. A second switch is coupled between the power supply node and the second tail current source, wherein the first switch is triggered to deactivate the first circuit module when the second circuit module is operating and the second switch is triggered to deactivate the second circuit module when the first circuit module is operating.
Abstract:
Multiple carrier frequencies are provided from a phase locked loop, especially closely adjacent quadrature amplitude modulated subcarriers for multiplexed data communications. A quadrature voltage controlled oscillator (VCO) and cascaded frequency dividers provide feedback to a phase comparator to lock the VCO to a reference signal. In addition to frequency divider outputs for use as subcarriers, e.g., binary division factors of the VCO frequency, a quadrature mixer multiplies and adds corresponding quadrature components at two of the frequencies, to generate a differential signal at a difference frequency. The mixer may be outside of the feedback signal path but preferably is in the feedback path to suppress noise. A polyphase filter converts the mixer output to a quadrature signal useful as a subcarrier. The technique efficiently generates sequential integer multiples of a basic frequency, such as sixteen adjacent integer multiples of a frequency reference.
Abstract:
A buffer circuit uses (e.g., active) inductors for driving capacitive loads. In one embodiment, the buffer circuit has one or more stages, each stage having one CMOS inverter. Each CMOS inverter has one NMOS transistor and one PMOS transistor and is coupled to a stage input and a stage output. Additionally, at least one stage of the buffer circuit has two inductors, each coupled between a different voltage reference for the buffer circuit and the stage output. One inductor has a PMOS transistor coupled to the gate of an NMOS transistor and the other inductor has an NMOS transistor coupled to the gate of a PMOS transistor. When driving capacitive loads, the inductors partially tune out the apparent load capacitance CL, thereby improving the charging capabilities of inverter and enabling quicker charge and discharge times. Furthermore, partially tuning out apparent load capacitance facilitates the driving of larger capacitive loads.
Abstract:
The invention relates to low temperature curable spin-on glass materials which are useful for electronic applications, such as optical devices, in particular for flat panel displays. A substantially crack-free silicon polymer film is produced by (a) preparing a composition comprising at least one silicon containing pre-polymer, colloidal silica, an optional catalyst, and optional water; (b) coating a substrate with the composition to form a film on the substrate, (c) crosslinking the composition by heating to produce a substantially crack-free silicon polymer film, having a thickness of from about 700 Å to about 20,000 Å, and a transparency to light in the range of about 400 nm to about 800 nm of about 90% or more.
Abstract:
The invention relates to low temperature curable spin-on glass materials which are useful for electronic applications, such as optical devices. A substantially crack-free and substantially void-free silicon polymer film is produced by (a) preparing a composition comprising at least one silicon containing pre-polymer, a catalyst, and optionally water; (b) coating a substrate with the composition to form a film on the substrate, (c) crosslinking the composition by heating to produce a substantially crack-free and substantially void-free silicon polymer film, having a a transparency to light in the range of about 400 nm to about 800 nm of about 95% or more.
Abstract:
A high sensitivity optical system for detection of chemical and biological analytes is disclosed comprising a vessel containing the chemical and biological analytes, a light-guide inside the vessel but separated from the vessel by the chemical and biological analytes, one or more excitation light sources at one end of the vessel, a detector at another end of the vessel, one or more excitation filters between the excitation light sources and the vessel, one or more emission filters between the vessel and the detector, and light directing components. The novel optical system is secured in a housing and connected to devices extrinsically or intrinsically for data input, process, display, storage, and communication. This optical system could enable clinical level diagnosis of a wide range of diseases in an inexpensive mobile point-of-care format. Furthermore, the form factor of the optical system can be significantly reduced to form a highly integrated lab-on-a-chip system.
Abstract:
A high sensitivity optical system for detection of chemical and biological analytes is disclosed comprising a vessel, a light-guide, analytes, excitation light source(s), a detector, excitation and emission filter(s), and light directing components. The novel optical system is secured in housing and connected to devices extrinsically or intrinsically for data input, process, display, storage, and communication. This optical system could enable clinical level diagnosis of a wide range of diseases in an inexpensive mobile point-of-care format. It can be a stand alone unit with single or an array of optical structures, or used in combination with other detection systems such as mobile microscope to form a qualitative and quantitative detection apparatus. It can also be implemented in some commercial instruments to improve sensitivities. Furthermore, the form factor of the optical system can be significantly reduced to form a highly integrated lab-on-a-chip solution.
Abstract:
It discloses an acoustic channel-based data communications method which performs channel coding on an original data signal using a CRC coding method and a BCH coding method to obtain a coded sequence; modulates the coded sequence using a preset audio sequence symbol set via a symbol mapping method to obtain a digital audio signal; selects a channel frequency band according to characteristics of a transmitting equipment and interference between frequency bands; and converts the digital audio signal into an analog audio signal through a digital-to-analog converter and transmits the signal to a channel for transmission according to the selected channel frequency band.
Abstract:
It discloses an acoustic channel-based data communications method which performs channel coding on an original data signal using a CRC coding method and a BCH coding method to obtain a coded sequence; modulates the coded sequence using a preset audio sequence symbol set via a symbol mapping method to obtain a digital audio signal; selects a channel frequency band according to characteristics of a transmitting equipment and interference between frequency bands; and converts the digital audio signal into an analog audio signal through a digital-to-analog converter and transmits the signal to a channel for transmission according to the selected channel frequency band.
Abstract:
Disclosed is an orthogonal frequency division multiplexing (OFDM)-based acoustic communications system. At an acoustic transmitting end, original data is modulated through channel coding into an acoustic signal of a data frame formed by multiple OFDM symbols and the acoustic signal is transmitted through a loudspeaker; at an acoustic receiving end, after a microphone receives the acoustic signal, and the acoustic signal is restored to the original data through demodulation and channel decoding. In a communication process, symbol synchronization is implemented through pilot information, and data frame synchronization is implemented in a manner of inserting baker codes, thereby simplifying processing, having a low bit error rate, improving acoustic communication efficiency, promoting development of acoustic communication, and having a good application prospect.