Abstract:
A process for forming low dielectric constant dielectric films for the production of microelectronic devices. A dielectric layer is formed on a substrate by chemical vapor depositing a monomeric or oligomeric dielectric precursor in a chemical vapor deposit apparatus, or a reaction product formed from the precursor in the apparatus, onto a substrate, to form a layer on a surface of a substrate. After optionally heating the layer at a sufficient time and temperature to dry the layer, the layer is then exposed to electron beam radiation, for a sufficient time, temperature, electron beam energy and electron beam dose to modify the layer. The electron beam exposing step is conducted by overall exposing the dielectric layer with a wide, large beam of electron beam radiation from a large-area electron beam source.
Abstract:
Production of a dielectric coating on a substrate whereby a poly(arylene ethers) or fluorinated poly(arylene ethers) layer is cured by exposure to electron beam radiation. A wide area electron beam is used which causes chemical reactions to occur in the polymer structure which are thought to cause crosslinks between polymer chains. The crosslinks lead to higher mechanical strength and higher glass transition temperature, lower thermal expansion coefficient, greater thermal-chemical stability and greater resistance to aggressive organic solvents. The polymer layer may also be optionally heated, thermally annealed, and/or exposed to UV actinic light.
Abstract:
Nanoporous silica dielectric films are modified by electron beam exposure after an optional hydrophobic treatment by an organic reactant. After formation of the film onto a substrate, the substrate is placed inside a large area electron beam exposure system. The resulting films are characterized by having a low dielectric constant and low water or silanol content compared to thermally cured films. Also, e-beam cured films have higher mechanical strength and better resistance to chemical solvents and oxygen plasmas compared to thermally cured films.