Abstract:
Presented is a method and apparatus for incrementally varying the frictional forces along an articulable column having succesive joints formed of alternate ball and socket members. Friction is varied by varying the contact angle between said ball and socket members along the length of the column and by supplying a compressive force to said joints via a tensioned means throughout the column. The effect of varying the frictional forces along the column is to vary the stiffness of individual column joints creating a structural member which can be tailored to the load requirements of a specific application.
Abstract:
A process for the deposition of a tin oxide film is provided that includes the decomposition of a tetravalent tin precursor under conditions of plasma enhanced chemical vapor deposition in a linear plasma source and onto a substrate moving through a plasma generated by the linear plasma source with a linear uniformity of thickness that varies by less than 5 thickness percent across the substrate. The substrate having a width of greater than 30 centimeters. The tin oxide film contains a dopant and a dopant concentration such that the film has a resistivity as a function of film deposition temperature of less than −4.6×10−5 Ohm-centimeter per degree Kelvin (T) plus 0.01 Ohm-centimeter where T is between 293 Kelvin and 673 Kelvin.
Abstract:
An apparatus for coating a substrate is provided that includes a racetrack-shaped plasma source having two straight portions and at least one terminal turnaround portion connecting said straight portions. A tubular target formed of a target material that forms a component of the coating has an end. The target is in proximity to the plasma source for sputtering of the target material. The target is secured to a tubular backing cathode, with both being rotatable about a central axis. A set of magnets are arranged inside the cathode to move an erosion zone aligned with the terminal turnaround toward the end of the target as the target is utilized to deposit the coating on the substrate. Target utilization of up to 87 weight percent the initial target weight is achieved.
Abstract:
A closed drift ion source is provided comprising a single magnetic source, a first pole and a second pole. The ends of the first and second poles are separated by a gap. The magnetic source is disposed proximate to one of the first pole and second pole. A first magnetic path is provided between one magnetic pole of the single magnetic source and the end of the first pole. A second magnetic path is provided between the other magnetic pole of the single magnetic source and the end of the second pole. The first and second magnetic paths are selectively constructed to produce a symmetrical magnetic field in the gap.
Abstract:
A process for modifying a surface of a substrate is provided that includes supplying electrons to an electrically isolated anode electrode of a closed drift ion source. The anode electrode has an anode electrode charge bias that is positive while other components of the closed drift ion source are electrically grounded or support an electrical float voltage. The electrons encounter a closed drift magnetic field that induces ion formation. Anode contamination is prevented by switching the electrode charge bias to negative in the presence of a gas, a plasma is generated proximal to the anode electrode to clean deposited contaminants from the anode electrode. The electrode charge bias is then returned to positive in the presence of a repeat electron source to induce repeat ion formation to again modify the surface of the substrate. An apparatus for modification of a surface of a substrate by this process is provided.
Abstract:
A gate valve for sealing an opening in the wall of a vacuum processing chamber is disclosed. The valve includes a gate having a pair of wheels mounted on opposite ends of the gate and a curved track aligned and shaped to guide the wheels through an angle so that the plane of the gate is rotated out of the path of substrates as the gate moves between its sealing and open positions. The curvature of the track should be sufficient to rotate the gate through an angle of at least 60.degree., and preferably 75.degree. to 105.degree., in order to minimize the dimension of the chamber normal to the direction of substrate travel.