Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
Abstract:
A mechanism and method for locking a bearing to a shaft includes a split sleeve and a receptive flange adapted to be fixed to the bearing. A positioning flange is coupled to the split sleeve. A screw extends through the positioning flange and threadingly engages the receptive flange. Rotation of the screw in a first direction axially drives the sleeve into engagement with the bearing to collapse the split sleeve into engagement with the shaft.
Abstract:
A mechanism and method for locking a bearing to a shaft includes a split sleeve and a receptive flange adapted to be fixed to the bearing. A positioning flange is coupled to the split sleeve. A screw extends through the positioning flange and threadingly engages the receptive flange. Rotation of the screw in a first direction axially drives the sleeve into engagement with the bearing to collapse the split sleeve into engagement with the shaft.
Abstract:
An adjustable hospital gown is designed to cover the bodies of users of varying shape and size. The gown has a torso-covering garment, a pair of backflaps, and an adjustable fastener. The torso-covering garment is used to cover the front side of the user's body. The pair of backflaps are connected along backflap seams that are positioned on opposite sides of the torso-covering garment. As a result, the pair of backflaps can be transitioned between an opened and a closed configuration. The adjustable fastener is connected in between one of the backflaps and the torso-covering garment such that the backflap can be repositioned to cinch the gown around the body of the user. By connecting the adjustable fastener to various anchor points, the size of the gown can be modified to accommodate user's of varying shape.
Abstract:
Mathematical models for the analysis of signal data generated by sequencing of a polynucleotide strand using a pH-based method of detecting nucleotide incorporation(s). In an embodiment, the measured output signal from the reaction confinement region of a reactor array is mathematically modeled. The output signal may be modeled as a linear combination of one or more signal components, including a background signal component. This model is solved to determine the nucleotide incorporation signal. In another embodiment, the incorporation signal from the reaction confinement region of a reactor array is mathematically modeled.
Abstract:
A method for nucleic acid sequencing includes disposing template polynucleotide strands in defined spaces on a sensor array, at least some of the template polynucleotide strands having a sequencing primer and a polymerase operably bound therewith; exposing the template polynucleotide strands to a series of flows of nucleotide species flowed according to a predetermined ordering; and determining, for each of the series of flows of nucleotide species, how many nucleotide incorporations occurred for that particular flow to determine a predicted sequence of nucleotides corresponding to the template polynucleotide strands, wherein the predetermined ordering (a) is not a series of consecutive repetitions of a 4-flow permutation of four different nucleotide species, (b) is not specifically tailored to a particular combination of a particular template polynucleotide strand to be sequenced and a particular sequencing primer to be used, and (c) comprises a phase-protecting flow ordering.
Abstract:
An automated on-touch template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, an emulsion PCR (ePCR) thermocycling plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermocycling subsystem, in automated fashion. The ePCR subsystem can continuously thermocycle an inverse emulsion passed therethrough and includes static temperature zones and a consumable thermocycling plate. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
Abstract:
An automated on-touch template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, an emulsion PCR (ePCR) thermocycling plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermocycling subsystem, in automated fashion. The ePCR subsystem can continuously thermocycle an inverse emulsion passed therethrough and includes static temperature zones and a consumable thermocycling plate. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
Abstract:
The invention provides apparatuses and methods of use thereof for sequencing nucleic acids subjected to a force, and thus considered under tension. The methods may employ but are not dependent upon incorporation of extrinsically detectably labeled nucleotides.