Abstract:
A circuit for controlling the read cycle includes plurality of shift stages configured to sequentially shift read signals; and an activating unit configured to activate a read cycle signal which represents a read cycle, by performing logical operation for output signals of the plurality of the shift stages, wherein the plurality of the shift stages are configured to sequentially shift the read signals for a period corresponding to burst setting information.
Abstract:
An internal voltage generator of a semiconductor memory device is capable of changing driving abilities between standby and active modes, to respond faster in the active mode and prevent a leakage current in the standby mode. The internal voltage generator of a semiconductor memory device comprises a driving controller for generating drive control signals having information about standby and active modes, a first voltage generator enabled by the drive control signals for comparing an internal voltage with a reference voltage in the standby and active modes, a first driver for generating the internal voltage according to a comparison performed by the first voltage generator, a second voltage generator enabled by the drive control signal for comparing the internal voltage with the reference voltage in the active mode, and a second driver for generating the internal voltage according to a comparison performed by the second voltage generator.
Abstract:
There is provided a reference voltage generator that generates a constant reference voltage regardless of a change in temperature. The reference voltage generator includes a temperature-compensated current generating part for reducing a supply current provided to an output terminal in response to an increase of temperature, and a diode for receiving the supply current through the output terminal.
Abstract:
A delay locked loop includes a delay pulse generation unit, a coding unit, and a delay line. The delay pulse generation unit is configured to generate a delay pulse having a certain width. The coding unit is configured to code the delay pulse and output a code value. The delay line is configured to delay an input clock by the code value, and generate a delayed locked clock. The delay pulse has a logic high level state during a third period equivalent to a difference between a first period, which corresponds to an integer multiple of the input clock, and a second period, which is a certain replica delay period.
Abstract:
A semiconductor integrated circuit includes a plurality of semiconductor chips respectively selected in response to a plurality of chip selection signals, and a chip selection signal generator configured to generate the chip selection signals in response to one first control signal for deciding whether to drive the semiconductor chips and at least one second control signal for selecting at least one semiconductor chip from among the semiconductor chips.
Abstract:
A delay locked loop includes a replica delay oscillator unit, a division unit, a pulse generation unit, a code value output unit, and a delay line. The replica delay oscillator unit generates a replica oscillation signal having a period corresponding to a replica delay. The division unit receives the replica oscillation signal and a clock signal and divides the replica oscillation signal and the clock signal at a first or second ratio in response to a delay locking detection signal. The pulse generation unit generates a delay pulse having a pulse width corresponding to a delay amount for causing a delay locking. The code value output unit adjusts a code value corresponding to the pulse width of the delay pulse in response to the delay locking detection signal. The delay line delays the clock signal in response to the code value.
Abstract:
A semiconductor memory device includes an open-loop-type delay locked loop (DLL) configured to generate a clock signal locked by reflecting a first delay amount which actually occurs in a data path and a second delay amount which is required for locking the clock signal, a latency control unit configured to shift an inputted command according to a latency code value corresponding to the first delay amount and latency information, and output the shifted command, and an additional delay line configured to delay the shifted command according to a delay code value corresponding to the second delay amount, and output the command of which operation timing is controlled.
Abstract:
A semiconductor integrated circuit includes a plurality of slave chips each including a core area including a memory cell array, a global data line configured to transfer input/output data of the corresponding core area, and a first peripheral circuit area configured to interface the corresponding core area and the corresponding global data line, a plurality of data transfer through-chip vias vertically formed through the plurality of slave chips, respectively, and coupled to the respective global data lines of the slave chips, and a master chip including a second peripheral circuit area configured to provide an input/output interface between the data transfer through-chip vias and an external controller.
Abstract:
A semiconductor integrated circuit includes a semiconductor chip including a memory cell array, a plurality of first through-chip vias configured to vertically penetrate through the semiconductor chip and operate as an interface for a signal and a supply voltage, and a semiconductor substrate. The semiconductor substrate includes a peripheral circuit region coupled to the plurality of first through-chip vias and configured to control the semiconductor chip and a conductivity pattern region configured to operate as an interface for the signal and the supply voltage between the peripheral circuit region and an external controller.
Abstract:
A semiconductor system for identifying stacked chips includes a first semiconductor chip and a plurality of second semiconductor chips. The first semiconductor chip generates a plurality of counter codes by using an internal clock or an external input clock and transmits slave address signals and the counter codes through a through-chip via. The second semiconductor chips are given corresponding identifications (IDs) by latching the counter codes for a predetermined delay time, compare the latched counter codes with the slave address signals, and communicate data with the first semiconductor chip through the through-chip via according to the comparison result.