Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A fin may be formed on the insulating layer. The fin may include a side surface and a top surface, and the side surface may have a orientation. A first gate may be formed on the insulating layer proximate to the side surface of the fin.
Abstract:
A double-semiconductor device includes a substrate, an insulating layer, a fin and a gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The fin has a number of side surfaces, a top surface and a bottom surface. The gate is formed on the insulating layer and surrounds the top surface, bottom surface and the side surfaces of the fin in the channel region of the semiconductor device. Surrounding the fin with gate material results in an increased total channel width and more flexible device adjustment margins.
Abstract:
A narrow channel FinFET is described herein with a narrow channel width. A protective layer may be formed over the narrow channel, the protective layer being wider than the narrow channel.
Abstract:
A method of fabricating an integrated circuit with ultra-shallow source/drain junctions utilizes a dummy or sacrificial gate structure. Dopants are provided through the openings associated with sacrificial spacers to form the source and drain extensions. The openings can be filled with spacers The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).
Abstract:
A triple gate metal-oxide semiconductor field-effect transistor (MOSFET) includes a fin structure, a first gate formed adjacent a first side of the fin structure, a second gate formed adjacent a second side of the fin structure opposite the first side, and a top gate formed on top of the fin structure. A gate around MOSFET includes multiple fins, a first sidewall gate structure formed adjacent one of the fins, a second sidewall gate structure formed adjacent another one of the fins, a top gate structure formed on one or more of the fins, and a bottom gate structure formed under one or more of the fins.
Abstract:
A double gate germanium metal-oxide semiconductor field-effect transistor (MOSFET) includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, and a second gate formed adjacent a second side of the germanium fin opposite the first side. A triple gate MOSFET includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, a second gate formed adjacent a second side of the germanium fin opposite the first side, and a top gate formed on top of the germanium fin. An all-around gate MOSFET includes a germanium fin, a first sidewall gate structure formed adjacent a first side of the germanium fin, a second sidewall gate structure formed adjacent a second side of the germanium fin, and additional gate structures formed on and around the germanium fin.
Abstract:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin and two gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. A first gate is formed on the insulating layer and is located on one side of the fin. A portion of the first gate includes conductive material doped with an n-type dopant. The second gate is formed on the insulating layer and is located on the opposite side of the fin as the first gate. A portion of the second gate includes conductive material doped with a p-type dopant.
Abstract:
A semiconductor structure includes a fin and a layer formed on the fin. The fin includes a first crystalline material having a rectangular cross section and a number of surfaces. The layer is formed on the surfaces and includes a second crystalline material. The first crystalline material has a different lattice constant than the second crystalline material to induce tensile strain within the first layer.
Abstract:
A semiconductor-on-insulator (SOI) wafer. The wafer includes a silicon substrate, a buried oxide (BOX) layer disposed on the substrate, and an active layer disposed on the box layer. The active layer has an upper silicon layer disposed on a silicon-germanium layer. The silicon-germanium layer is disposed on a lower silicon layer. The silicon-germanium of the silicon-germanium layer is strained silicon-germanium and is about 200 Å to about 400 Å thick.
Abstract:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.