摘要:
The density (and hence thickness) of a functional ink layer (41) as comprises a part of an active printed electronic component (71) is determined through interaction (13) of the functional ink with light. This information, in turn, facilitates assessment (14) of the likely corresponding electrical performance of the electronic component. When the functional ink comprises a transparent material, a dye can be added to facilitate the desired interaction and assessment.
摘要:
A semiconductor device can be comprised of a substrate having a plurality of different printable semiconductor inks formed thereon. In a preferred approach at least some of these printable semiconductor inks comprise organic semiconductor material inks. These semiconductor inks can vary from one another with respect to various properties including but not limited to electrical characteristics and environmental efficacy.
摘要:
Organic field effect transistors (OFETs) can be created rapidly and at low cost on organic films by using a multilayer film (202) that has an electrically conducting layer (204, 206) on each side of a dielectric core. The electrically conducting layer is patterned to form gate electrodes (214), and a polymer film (223) is attached onto the gate electrode side of the multilayer dielectric film, using heat and pressure (225) or an adhesive layer (228). A source electrode and a drain electrode (236) are then fashioned on the remaining side of the multilayer dielectric film, and an organic semiconductor (247) is deposited over the source and drain electrodes, so as to fill the gap between the source and drain electrodes and touch a portion of the dielectric film to create an organic field effect transistor.
摘要:
An organic semiconductor product state monitor attached to a product receives a product usefulness input, which, along with the product predetermined usefulness limit, is used to determine an indicator command to indicate a state of usefulness of the product. An organic circuit is formed and placed on a product with a power supply to control the circuit operation.
摘要:
An integrated circuit (100, 200, 300, 400) that includes a field effect transistor (102, 202, 302, 402) is fabricated by forming an organic semiconductor channel (112, 216, 308, 418) on one substrate (106, 204), forming device electrodes (114, 116, 110, 208, 210, 212) on one or more other substrates (104, 108, 206), and subsequently laminating the substrates together. In one embodiment, a dielectric patch (214) that functions as a gate dielectric is formed on one of the substrates (204, 206) prior to performing the lamination. Lamination provides a low cost route to device assembly, allows for separate fabrication of different device structures on different substrates, and thins various device layers resulting in improved performance.
摘要:
An apparatus (200) such as a semiconductor device comprises a gate electrode (201) and at least a first electrode (202). The first electrode preferably has an established perimeter that at least partially overlaps with respect to the gate electrode to thereby form a corresponding transistor channel. In a preferred approach the first electrode has a surface area that is reduced notwithstanding the aforementioned established perimeter. This, in turn, aids in reducing any corresponding parasitic capacitance. This reduction in surface area may be accomplished, for example, by providing openings (203) through certain portions of the first electrode.
摘要:
A power source (201) and a printed transistor circuit (202) are combined with one another in a stacked and integral configuration. In a preferred though optional configuration this combination can further comprise a substrate (200) of choice. The power source can comprise a technology of choice such as, but not limited, to, a battery or a photovoltaic element. These elements can be combined (104) using a joining technology of choice such as, but not limited to, laminating these elements together or printing one upon the other.
摘要:
An energizable design image portion of a provided design pattern (101) is printed (103) on a provided substrate (101) using a functional ink comprised of at least one energy emissive material. A passive design image portion of that design pattern is then also printed (104) on that substrate using at least one graphic arts ink. In a preferred embodiment this process (100) further provides for printing (105) electrically conductive electrodes on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
摘要:
Two or more semiconductor devices (21 and 22) are formed on a substrate (20) and are each comprised of a plurality of printed components (23 and 24). At least one such printed component (25) is shared by both such semiconductor devices.
摘要:
An organic semiconductor inverting circuit includes at least three organic transistors, an output terminal (110, 210, 310, 410), a reference supply voltage input (115, 215, 315, 415), a first positive supply voltage input (120, 220, 320, 420), and a negative supply voltage input (125, 225, 325, 425). One of the three organic transistors is an input transistor having a gate to which is coupled an input terminal (105, 205, 305, 405). The output terminal (110, 210, 310, 410) is coupled to a first electrode of at least one of the at least three organic transistors.