Abstract:
A metrology performance analysis system includes a metrology tool including one or more detectors and a controller communicatively coupled to the one or more detectors. The controller is configured to receive one or more metrology data sets associated with a metrology target from the metrology tool in which the one or more metrology data sets include one or more measured metrology metrics and the one or more measured metrology metrics indicate deviations from nominal values. The controller is further configured to determine relationships between the deviations from the nominal values and one or more selected semiconductor process variations, and determine one or more root causes of the deviations from the nominal values based on the relationships between values of the one or more metrology metrics and the one or more selected semiconductor process variations.
Abstract:
Metrology methods, systems and targets are provided, which implement a side by side paradigm. Adjacent cells with periodic structures are used to extract the overlay error, e.g., by introducing controllable phase shifts or image shifts which enable algorithmic computation of the overlay. The periodic structures are designed to exhibit a rotational symmetry to support the computation and reduce errors.
Abstract:
Metrology methods and targets are provided, for estimating inter-cell process variation by deriving, from overlay measurements of at least three target cells having different designed misalignments, a dependency of a measured inaccuracy on the designed misalignments (each designed misalignment is between at least two overlapping periodic structures in the respective target cell). Inaccuracies which are related to the designed misalignments are reduced, process variation sources are detected and targets and measurement algorithms are optimized according to the derived dependency.
Abstract:
Angle-resolved reflectometers and reflectometry methods are provided, which comprise a coherent light source, an optical system arranged to scan a test pattern using a spot of coherent light from the light source to yield realizations of the light distribution in the collected pupil, wherein the spot covers a part of the test pattern and the scanning is carried out optically or mechanically according to a scanning pattern, and a processing unit arranged to generate a composite image of the collected pupil distribution by combining the pupil images. Metrology systems and methods are provided, which reduce diffraction errors by estimating, quantitatively, a functional dependency of measurement parameters on aperture sizes and deriving, from identified diffraction components of the functional dependency which relate to the aperture sizes, correction terms for the measurement parameters with respect to the measurement conditions.
Abstract:
Angle-resolved reflectometers and reflectometry methods are provided, which comprise a coherent light source, an optical system arranged to scan a test pattern using a spot of coherent light from the light source to yield realizations of the light distribution in the collected pupil, wherein the spot covers a part of the test pattern and the scanning is carried out optically or mechanically according to a scanning pattern, and a processing unit arranged to generate a composite image of the collected pupil distribution by combining the pupil images. Metrology systems and methods are provided, which reduce diffraction errors by estimating, quantitatively, a functional dependency of measurement parameters on aperture sizes and deriving, from identified diffraction components of the functional dependency which relate to the aperture sizes, correction terms for the measurement parameters with respect to the measurement conditions.
Abstract:
A method for target measurement is provided which comprises designing a reflection-symmetric target and measuring overlays of the target along at least one reflection symmetry direction of the target. Also, a tool calibration method comprising calibrating a scatterometry measurement tool with respect to a reflection symmetry of a reflection symmetric target. Further provided are methods of measuring scatterometry overlay using first order and zeroth order scatterometry measurements of a reflection-symmetric scatterometry targets. Also, a scatterometry target comprising a reflection-symmetric target having two cells in each of at least two measurement directions, wherein respective cells have different offsets along one measurement direction and similar offsets along other measurement directions. Further, a scatterometry measurement system comprising a reflection symmetric illumination and calibrated to measure reflection symmetric targets. Also, metrology tool comprising an illumination path and a collection path of the tool which are symmetric to reflection symmetries of a target.
Abstract:
Angle-resolved reflectometers and reflectometry methods are provided, which comprise a coherent light source, an optical system arranged to scan a test pattern using a spot of coherent light from the light source to yield realizations of the light distribution in the collected pupil, wherein the spot covers a part of the test pattern and the scanning is carried out optically or mechanically according to a scanning pattern, and a processing unit arranged to generate a composite image of the collected pupil distribution by combining the pupil images. Metrology systems and methods are provided, which reduce diffraction errors by estimating, quantitatively, a functional dependency of measurement parameters on aperture sizes and deriving, from identified diffraction components of the functional dependency which relate to the aperture sizes, correction terms for the measurement parameters with respect to the measurement conditions.
Abstract:
Methods and metrology modules and tools are provided, which minimize an estimated overlay variation measure at misalignment vector values obtained from a derived functional form of an overlay linear response to non-periodic effects. Provided methods further quantifying target noise due to the non-periodic effects using multiple repeated overlay measurements of the target cells, calculating an ensemble of overlay measurements between the cells over the multiple measurement repeats and expressing the target noise as a statistical derivative of the calculated overlay measurements. Sub-ensembles may be selected to further characterize the target noise. Various outputs include optimized scanning patterns, target noise metrics and recipe and target optimization.
Abstract:
Metrology methods and respective software and module are provided, which identify and remove measurement inaccuracy which results from process variation leading to target asymmetries. The methods comprise identifying an inaccuracy contribution of process variation source(s) to a measured scatterometry signal (e.g., overlay) by measuring the signal across a range of measurement parameter(s) (e.g., wavelength, angle) and targets, and extracting a measurement variability over the range which is indicative of the inaccuracy contribution. The method may further assume certain functional dependencies of the resulting inaccuracy on the target asymmetry, estimate relative donations of different process variation sources and apply external calibration to further enhance the measurement accuracy.
Abstract:
The disclosure is directed to various apodization schemes for pupil imaging scatterometry. In some embodiments, the system includes an apodizer disposed within a pupil plane of the illumination path. In some embodiments, the system further includes an illumination scanner configured to scan a surface of the sample with at least a portion of apodized illumination. In some embodiments, the system includes an apodized pupil configured to provide a quadrupole illumination function. In some embodiments, the system further includes an apodized collection field stop. The various embodiments described herein may be combined to achieve certain advantages.