Confined illumination for small spot size metrology

    公开(公告)号:US10006865B1

    公开(公告)日:2018-06-26

    申请号:US15640961

    申请日:2017-07-03

    摘要: Methods and systems are described herein for producing high radiance illumination light for use in semiconductor metrology based on a confined, sustained plasma. One or more plasma confining circuits introduce an electric field, a magnetic field, or a combination thereof to spatially confine a sustained plasma. The confinement of the sustained plasma decreases the size of the induced plasma resulting in increased radiance. In addition, plasma confinement may be utilized to shape the plasma to improve light collection and imaging onto the specimen. The induced fields may be static or dynamic. In some embodiments, additional energy is coupled into the confined, sustained plasma to further increase radiance. In some embodiments, the pump energy source employed to sustained the plasma is modulated in combination with the plasma confining circuit to reduce plasma emission noise.

    Small-angle scattering X-ray metrology systems and methods

    公开(公告)号:US09846132B2

    公开(公告)日:2017-12-19

    申请号:US14515322

    申请日:2014-10-15

    CPC分类号: G01N23/201 G01N2033/0095

    摘要: Disclosed are apparatus and methods for performing small angle x-ray scattering metrology. This system includes an x-ray source for generating x-rays and illumination optics for collecting and reflecting or refracting a portion of the generated x-rays towards a particular focus point on a semiconductor sample in the form of a plurality of incident beams at a plurality of different angles of incidence (AOIs). The system further includes a sensor for collecting output x-ray beams that are scattered from the sample in response to the incident beams on the sample at the different AOIs and a controller configured for controlling operation of the x-ray source and illumination optics and receiving the output x-rays beams and generating an image from such output x-rays.

    Compac X-ray source for semiconductor metrology

    公开(公告)号:US09826614B1

    公开(公告)日:2017-11-21

    申请号:US14181697

    申请日:2014-02-16

    IPC分类号: H05G2/00

    CPC分类号: H05G2/00 G21K7/00 H05G2/008

    摘要: Methods and systems for realizing a high brightness, compact x-ray source suitable for high throughput, in-line x-ray metrology are presented herein. A compact electron beam accelerator is coupled to a compact undulator to produce a high brightness, compact x-ray source capable of generating x-ray radiation with wavelengths of approximately one Angstrom or less with a flux of at least 1e10 photons/s*mm^2. In some embodiments, the electron path length through the electron beam accelerator is less than ten meters and the electron path length through the undulator is also less than 10 meters. The compact x-ray source is tunable, allowing for adjustments of both wavelength and flux of the generated x-ray radiation. The x-ray radiation generated by the compact x-ray source is delivered to the specimen over a small spot, thus enabling measurements of modern semiconductor structures.

    Combined x-ray and optical metrology
    14.
    发明授权
    Combined x-ray and optical metrology 有权
    组合x射线和光学计量学

    公开(公告)号:US09535018B2

    公开(公告)日:2017-01-03

    申请号:US14074689

    申请日:2013-11-07

    摘要: Structural parameters of a specimen are determined by fitting models of the response of the specimen to measurements collected by different measurement techniques in a combined analysis. X-ray measurement data of a specimen is analyzed to determine at least one specimen parameter value that is treated as a constant in a combined analysis of both optical measurements and x-ray measurements of the specimen. For example, a particular structural property or a particular material property, such as an elemental composition of the specimen, is determined based on x-ray measurement data. The parameter(s) determined from the x-ray measurement data are treated as constants in a subsequent, combined analysis of both optical measurements and x-ray measurements of the specimen. In a further aspect, the structure of the response models is altered based on the quality of the fit between the models and the corresponding measurement data.

    摘要翻译: 样本的结构参数是通过将样本的响应拟合到通过不同测量技术在综合分析中收集的测量结果来确定的。 分析样本的X射线测量数据,以确定在样本的光学测量和x射线测量的组合分析中被视为常数的至少一个样本参数值。 例如,基于x射线测量数据确定特定结构性质或特定材料性质,例如样品的元素组成。 从x射线测量数据确定的参数在随后的样本的光学测量和x射线测量的组合分析中被视为常数。 在另一方面,响应模型的结构基于模型与相应测量数据之间的拟合质量而改变。

    Model building and analysis engine for combined X-ray and optical metrology

    公开(公告)号:US10013518B2

    公开(公告)日:2018-07-03

    申请号:US13935275

    申请日:2013-07-03

    IPC分类号: G06F17/50 G03F7/20 G03F1/70

    摘要: Structural parameters of a specimen are determined by fitting models of the response of the specimen to measurements collected by different measurement techniques in a combined analysis. Models of the response of the specimen to at least two different measurement technologies share at least one common geometric parameter. In some embodiments, a model building and analysis engine performs x-ray and optical analyses wherein at least one common parameter is coupled during the analysis. The fitting of the response models to measured data can be done sequentially, in parallel, or by a combination of sequential and parallel analyses. In a further aspect, the structure of the response models is altered based on the quality of the fit between the models and the corresponding measurement data. For example, a geometric model of the specimen is restructured based on the fit between the response models and corresponding measurement data.

    Confined illumination for small spot size metrology

    公开(公告)号:US09719932B1

    公开(公告)日:2017-08-01

    申请号:US14532971

    申请日:2014-11-04

    摘要: Methods and systems are described herein for producing high radiance illumination light for use in semiconductor metrology based on a confined, sustained plasma. One or more plasma confining circuits introduce an electric field, a magnetic field, or a combination thereof to spatially confine a sustained plasma. The confinement of the sustained plasma decreases the size of the induced plasma resulting in increased radiance. In addition, plasma confinement may be utilized to shape the plasma to improve light collection and imaging onto the specimen. The induced fields may be static or dynamic. In some embodiments, additional energy is coupled into the confined, sustained plasma to further increase radiance. In some embodiments, the pump energy source employed to sustained the plasma is modulated in combination with the plasma confining circuit to reduce plasma emission noise.

    Scatterometry-Based Imaging and Critical Dimension Metrology
    17.
    发明申请
    Scatterometry-Based Imaging and Critical Dimension Metrology 有权
    基于Scatterometry的成像和关键尺寸计量学

    公开(公告)号:US20150300965A1

    公开(公告)日:2015-10-22

    申请号:US14690442

    申请日:2015-04-19

    IPC分类号: G01N23/201

    摘要: Methods and systems for performing measurements of semiconductor structures and materials based on scatterometry measurement data are presented. Scatterometry measurement data is used to generate an image of a material property of a measured structure based on the measured intensities of the detected diffraction orders. In some examples, a value of a parameter of interest is determined directly from the map of the material property of the measurement target. In some other examples, the image is compared to structural characteristics estimated by a geometric, model-based parametric inversion of the same measurement data. Discrepancies are used to update the geometric model of the measured structure and improve measurement performance. This enables a metrology system to converge on an accurate parametric measurement model when there are significant deviations between the actual shape of a manufactured structure subject to model-based measurement and the modeled shape of the structure.

    摘要翻译: 介绍了基于散射测量数据进行半导体结构和材料测量的方法和系统。 散射测量测量数据用于基于检测到的衍射级的测量强度来生成测量结构的材料特性的图像。 在一些示例中,直接从测量对象的材料属性的映射确定感兴趣的参数的值。 在一些其他示例中,将图像与通过相同测量数据的几何,基于模型的参数反演估计的结构特征进行比较。 差异用于更新测量结构的几何模型,并提高测量性能。 当使基于模型的测量的制造结构的实际形状与结构的建模形状之间存在显着的偏差时,这使测量系统能够收敛于精确的参数测量模型。

    Combined X-Ray and Optical Metrology
    18.
    发明申请
    Combined X-Ray and Optical Metrology 有权
    组合X射线和光学计量学

    公开(公告)号:US20150032398A1

    公开(公告)日:2015-01-29

    申请号:US14074689

    申请日:2013-11-07

    IPC分类号: G01N23/203 G01B15/00

    摘要: Structural parameters of a specimen are determined by fitting models of the response of the specimen to measurements collected by different measurement techniques in a combined analysis. X-ray measurement data of a specimen is analyzed to determine at least one specimen parameter value that is treated as a constant in a combined analysis of both optical measurements and x-ray measurements of the specimen. For example, a particular structural property or a particular material property, such as an elemental composition of the specimen, is determined based on x-ray measurement data. The parameter(s) determined from the x-ray measurement data are treated as constants in a subsequent, combined analysis of both optical measurements and x-ray measurements of the specimen. In a further aspect, the structure of the response models is altered based on the quality of the fit between the models and the corresponding measurement data.

    摘要翻译: 样本的结构参数是通过将样本的响应拟合到通过不同测量技术在综合分析中收集的测量结果来确定的。 分析样本的X射线测量数据,以确定在样本的光学测量和x射线测量的组合分析中被视为常数的至少一个样本参数值。 例如,基于x射线测量数据确定特定结构性质或特定材料性质,例如样品的元素组成。 从x射线测量数据确定的参数在随后的样本的光学测量和x射线测量的组合分析中被视为常数。 在另一方面,响应模型的结构基于模型与相应测量数据之间的拟合质量而改变。

    Methods and apparatus for measuring semiconductor device overlay using X-ray metrology

    公开(公告)号:US09885962B2

    公开(公告)日:2018-02-06

    申请号:US14521966

    申请日:2014-10-23

    IPC分类号: G01N21/95 G03F7/20 H01L21/66

    摘要: Disclosed are apparatus and methods for determining overlay error in a semiconductor target. For illumination x-rays having at least one angle of incidence (AOI), a correlation model is obtained, and the correlation model correlates overlay error of a target with a modulation intensity parameter for each of one or more diffraction orders (or a continuous diffraction intensity distribution) for x-rays scattered from the target in response to the illumination x-rays. A first target is illuminated with illumination x-rays having the at least one AOI and x-rays that are scattered from the first target in response to the illumination x-rays are collected. An overlay error of the first target is determined based on the modulation intensity parameter of the x-rays collected from the first target for each of the one or more diffraction orders (or the continuous diffraction intensity distribution) and the correlation model.

    High brightness liquid droplet X-ray source for semiconductor metrology

    公开(公告)号:US09693439B1

    公开(公告)日:2017-06-27

    申请号:US14304329

    申请日:2014-06-13

    IPC分类号: H05G2/00 G01N23/201

    摘要: Methods and systems for realizing a high brightness liquid metal droplet based x-ray source suitable for high throughput x-ray metrology are presented herein. A high power laser bombards a solid target material to generate liquid metal droplets. The laser generated liquid metal droplets are excited with a focused, high power excitation beam such as an electron or laser beam. The excitation beam is synchronized with the stream of liquid metal droplets stimulated by the high power laser to achieve a stable x-ray emission generated by the excited liquid metal droplets. In some embodiments, x-ray optics are designed to efficiently collect and focus radiation within a desired emission band onto a measurement target. Reliability is improved by shielding the excitation source and the x-ray optics from the region of interaction between the excitation beam and the liquid metal droplet anode by a localized curtain of shielding gas.