Abstract:
Provided is a nanophosphor having a core/double shell structure, the nanophosphor including a upconversion core including a Yb3+, Ho3+, and Ce3+− co-doped fluoride-based nanophosphor represented by Formula 1; a first shell surrounding at least a portion of the upconversion core, and comprising a Nd3+ and Yb3+ co-doped fluoride-based crystalline composition represented by Formula 2; and a second shell surrounding at least a portion of the first shell, and having paramagnetic properties represented by Formula 3.
Abstract:
A catalyst for synthesizing hydrogen peroxide is provided. The catalyst includes first material capable of dissociating hydrogen molecules; and second material capable of suppressing dissociation of oxygen molecules, where one or more interfaces are formed between the first material and the second material. The catalyst can be used as an alternative to the expensive palladium catalysts. In particular, the catalyst can be used for the direct synthesis of hydrogen peroxide.
Abstract:
The present invention relates to a novel method for preparing a water-insoluble metal hydroxide, and a use thereof. The water-insoluble metal hydroxide of the present invention is conveniently and efficiently prepared s through the high-temperature heat treatment step two times and the washing step, and thus contains a small amount of an alkali metal and has a high crystallinity and a phase purity. The water-insoluble metal hydroxide of the present invention or metal oxide therefrom exhibits an absorption wavelength at a low wavelength range (for example, 490 nm or less) and a light emitting wavelength at a high wavelength range (for example, from 500 nm or more to less than 1,100 nm). Accordingly, the water-insoluble metal hydroxide of the present invention may be efficiently used in various applications such as a fire retardant, an antacid, an adsorbent and so forth, and may also be doped with another metal ion to be utilized as a raw material for fabricating a catalyst, a fluorescent material, an electrode material, a secondary battery material and the like.
Abstract:
The present invention relates to a nanophosphor which may be used as a wavelength conversion part of a solar cell, a fluorescent contrast agent, and a light emitting part of a display device, and a synthesis method thereof. The nanophosphor of the present invention is excited by ultraviolet light to exhibit strong green light emission, and has multicolor light emission characteristics capable of controlling a color such as green, yellowish green, yellow, and orange color by only adjusting the amount of a doping agent.
Abstract:
Disclosed is a photodetector including an electrically conductive substrate, a first electrode formed on the substrate, a second electrode disposed to be spaced apart from the first electrode, a plasmonic nanostructure positioned between the first electrode and the second electrode and having surface plasmon resonance, and a resistance measuring device or an electrical conductivity measuring device connected to the first electrode and the second electrode.
Abstract:
The present disclosure relates to down-shifting nanophosphors, a method for preparing the same, and a luminescent solar concentrator (LSC) using the same. The down-shifting nanophosphors according to an embodiment of the present disclosure include a core including NaYF4 nanocrystals doped with neodymium (Nd) and ytterbium (Yb), and further include a neodymium (Nd)-doped crystalline shell surrounding the core, or further include a NaYF4 crystalline shell surrounding the crystalline shell. Therefore, the down-shifting nanophosphors efficiently absorb near infrared rays with a wavelength range of 700-900 nm and efficiently emit near infrared rays with a wavelength range of 950-1050 nm. In addition, the down-shifting nanophosphors according to an embodiment of the present disclosure has a size of 60 nm or less, and thus can be applied to manufacture transparent LSC films with ease and can realize transparent solar cell modules having high near infrared ray shifting efficiency.
Abstract:
The present disclosure provides a Cu1.81S catalyst for synthesizing NH3 and a method for synthesizing NH3 using the same. According to the present disclosure, the Cu1.81S catalyst is provided in order to increase an efficiency of NH3 synthesis. A copper sulfide catalyst and the method for synthesizing NH3 via an electrochemical nitrogen reduction reaction (NRR) using the Cu1.81S catalyst are provided in order to reduce a limiting potential (UL) required for the NRR. In the NRR for the NH3 synthesis, it is provided the copper sulfide catalyst that can be used in any one of two different pathways for the NRR, and the method for synthesizing NH3 with higher activity of the NRR based thereon.
Abstract:
Provided is a catalyst for synthesizing hydrogen peroxide as represented by the following Chemical Formula 1: RhxAg(1-x), [Chemical Formula 1] where 0
Abstract:
There is provided a phosphor powder which includes a wavelength converting material and a silica-based inorganic substance surrounding the wavelength converting material and represented by the following Formula 1, wherein a content of a hydrosilyl group (Si—H) is greater than or equal to 10 ppm by weight, based on the total weight of the silica-based inorganic substance: wherein X represents oxygen (O) or an amine group (NH), Y represents hydrogen (H), a hydroxyl group (OH), an amino group (NH2), or an alkyl group containing heteroelements, and the heteroelements include at least one selected from the group consisting of phosphorus (P), nitrogen (N), sulfur (S), oxygen (O), and a halogen element.
Abstract:
Provided are a nanophosphor and a silica composite including the nanophosphor. The nanophosphor has a core/first shell/second shell structure or a core/first shell/second shell/third shell structure, wherein the core includes a Yb3+-doped fluoride-based nanoparticle, the first shell is an up-conversion shell including a Yb3+ and Tm3+-codoped fluoride-based crystalline composition, the second shell is a fluoride-based emission shell, and the third shell is an outermost crystalline shell.