摘要:
A method of forming a light sensitive semiconductor structure is provided. The method includes providing a semiconductor wafer comprising a semiconductor layer comprising a light sensitive region, providing a gate structure comprising an insulation layer on said semiconductor layer and a polysilicon layer on said insulation layer, providing a contact stop layer on said gate structure, wherein said contact stop layer covers said light sensitive region, providing an etch mask, etching said contact stop layer using said etch mask to form said opening, etching said polysilicon layer using said etch mask, and providing a plurality of metal layers comprising a first metal layer electrically connected to said semiconductor layer and a plurality of dielectric layers between metal layers of said plurality of metal layers.
摘要:
The present invention relates to a photodetector (3) comprising: a longitudinal portion (12) of a waveguide (11) which comprises or is formed by two waveguide segments (12a, 12b), which extend at least substantially parallel to one another in the longitudinal direction and are preferably distanced from one another in the transverse direction, forming a gap (14) between them; and an active element (13), which overlies the longitudinal portion (12) of the waveguide and comprises at least one material or consists of at least one material that absorbs electromagnetic radiation of at least one wavelength and generates an electric photosignal as a result of the absorption, the two waveguide segments (12a, 12b) each being in contact, at least in some portions, on at least one side, in particular on the side facing the active element (14), with a gate electrode (15a, 15b) which preferably comprises silicon or consists of silicon.
摘要:
A compact collision detector can be configured for low power operation to facilitate collision avoidance. In one embodiment, a nanoscale collision detector can be based on a photodetector, stacked on top of a non-volatile and programmable memory architecture that imitates the escape response of LGMD neuron at a frugal energy expenditure of few nanojoules (nJ) and at the same time can offer orders of magnitude benefit in device footprint (e.g. by having a relatively small size). Embodiments of the collision detector can be utilized in smart, low-cost, task-specific, energy efficient and miniaturized collision detection systems configured for collision avoidance.
摘要:
Provided are photoelectric devices and electronic apparatuses including the photoelectric devices. A photoelectric device may include a photoactive layer, the photoactive layer may include a nanostructure layer configured to generate a charge in response to light and a semiconductor layer adjacent to the nanostructure layer. The nanostructure layer may include one or more quantum dots. The semiconductor layer may include an oxide semiconductor. The photoelectric device may include a first electrode and a second electrode that contact different regions of the photoactive layer. A number of the photoelectric conversion elements may be arranged in a horizontal direction or may be stacked in a vertical direction. The photoelectric conversion elements may absorb and thereby detect light in different wavelength bands without the use of color filters.
摘要:
One embodiment according to the present disclosure is an imaging apparatus including pixels. The pixel includes a junction type field effect transistor (JFET) provided in a semiconductor substrate. The JFET includes a gate region and a channel region. An orthogonal projection of the gate region onto a plane parallel to a surface of the semiconductor substrate intersects an orthogonal projection of the channel region onto the plane. Each of a source-side portion of the orthogonal projection of the channel region and a drain-side portion of the orthogonal projection of the channel region protrudes out of the orthogonal projection of the gate region.
摘要:
Disclosed is a photodetector including an electrically conductive substrate, a first electrode formed on the substrate, a second electrode disposed to be spaced apart from the first electrode, a plasmonic nanostructure positioned between the first electrode and the second electrode and having surface plasmon resonance, and a resistance measuring device or an electrical conductivity measuring device connected to the first electrode and the second electrode.
摘要:
The present invention relates to a semiconductor component (1) having a photosensitive semiconductor layer (2), wherein the photosensitive semiconductor layer (2) is doped with a first doping density (D1) of a first conduction type which brings about an effective conversion of electromagnetic radiation penetrating into the semiconductor layer (2) into electrical charge carriers, having at least two modulation gates (4A, 4B) which are arranged at a mutual spacing and are each formed by a trench gate extending from a surface (3) of the semiconductor layer (2) and perpendicular to this surface (3) into the semiconductor layer (2), and having at least two readout diodes (5A, 5B) arranged at a mutual spacing and near the surface (3) between the two modulation gates (4A, 4B). In order to provide a semiconductor component for distance detection having improved characteristics with regard to sensitivity and resolution, the invention proposes that a separating implant (6) be inserted into the semiconductor layer (2) between the two readout diodes (5A, 5B), said implant having the same conduction type as the semiconductor layer (2), but having a second, higher doping density (D2).
摘要:
An imaging device formed as an active pixel array combining a CMOS fabrication process and a nanowire fabrication process. The pixels in the array may include a single or multiple photogates surrounding the nanowire. The photogates control the potential profile in the nanowire, allowing accumulation of photo-generated charges in the nanowire and transfer of the charges for signal readout. Each pixel may include a readout circuit which may include a reset transistor, charge transfer switch transistor, source follower amplifier, and pixel select transistor. A nanowire is generally structured as a vertical rod on the bulk semiconductor substrate to receive light energy impinging onto the tip of the nanowire. The nanowire may be configured to function as either a photodetector or a waveguide configured to guild the light to the substrate. Light of different wavelengths can be detected using the imaging device.
摘要:
“An imaging device formed as an active pixel array combining a CMOS fabrication process and a nanowire fabrication process. The pixels in the array may include a single or multiple photogates surrounding the nanowire. The photogates control the potential profile in the nanowire, allowing accumulation of photo-generated charges in the nanowire and transfer of the charges for signal readout. Each pixel may include a readout circuit which may include a reset transistor, charge transfer switch transistor, source follower amplifier, and pixel select transistor. A nanowire is generally structured as a vertical rod on the bulk semiconductor substrate to receive light energy impinging onto the tip of the nanowire. The nanowire may be configured to function as either a photodetector or a waveguide configured to guild the light to the substrate. Light of different wavelengths can be detected using the imaging device.”
摘要:
A solid-state imaging device has a matrix of pixels arranged in rows and columns, a first signal holding circuit for holding a first signal transferred from each of the pixels through a vertical signal line, a second signal holding circuit for holding a second signal transferred from the each pixel through the vertical signal line, and a horizontal signal line group connected to the first signal holding circuit and the second signal holding circuit. The first signal holding circuit and the second signal holding circuit are axially symmetrically positioned one on each side of the horizontal signal line group.