Abstract:
An improved on-chip voltage regulator providing improved reliability by eliminating voltage stresses on critical components, comprising, a reference-signal generating block providing a first-order temperature-compensated voltage-reference signal and a first-order temperature-compensated current-reference signal, an operational-amplifier block providing a regulated voltage, connected to the outputs of said reference signal generating block; a standby protection block receiving an external signal for enabling/disabling said reference-signal generating block and said operational-amplifier block, and; a protection voltage block connected to all said blocks; wherein critical elements of said blocks are connected such that voltage difference between any two terminals is always less than the break down voltage of said critical element.
Abstract:
An embodiment of a detector includes first and second generators. The first generator is operable to receive a transition of a first signal and to generate in response to the transition a first pulse having a length that is approximately equal to a length of a detection window. And the second generator is operable to receive a second signal and to generate a second pulse having a relationship to the first pulse in response to a transition of the second signal occurring approximately during the detection window.
Abstract:
Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. We present a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
Abstract:
A system on chip (SoC) has a digital domain. An adaptive voltage/frequency scaling circuit includes a critical path replica circuit with respect to that digital domain. The critical path replica circuit generates a margin signal, and the adaptive voltage scaling circuit responds to the margin signal by decreasing bias voltage (and/or increasing clock frequency) applied to the digital domain of the system on chip so as to recover available margin. A fail-safe timing sensor is included within the digital domain of the system on chip. The timing sensor generates a flag signal when timing criteria within the digital domain are violated. The adaptive voltage scaling circuit responds to the flag signal by increasing the bias voltage (and/or decreasing the clock frequency) applied to the digital domain of the system on chip so as to implement a recovery operation.
Abstract:
The disclosure relates a compensated output buffer circuit providing an improved slew rate control and a method for minimizing the variations in the current slew rate of the buffer over process, voltage and temperature (PVT) conditions. The output buffer circuit includes a split-gate compensated driver and a slew rate control circuit. Accordingly, a desired slew rate can be maintained with fewer variations over wide range of variations in PVT conditions.
Abstract:
Circuits and methods for an automatic coarse tuning in a phase locked loop (PLL) include observing a variation in a control voltage to disable a fine loop and to enable a coarse loop as the control voltage departs from a specified range. The circuit includes the fine loop, the coarse loop, and a control circuit. The fine loop includes a phase frequency detector (PFD), a charge pump, a loop filter, a VCO and a divider. The coarse loop includes a frequency detector, an up counter, a down counter, and an LC VCO. The control circuit includes a bandgap module, a comparator and other circuits such as a lock detect circuit. The control circuit is used to switch between the coarse loop and the fine loop.
Abstract:
A phase locked loop (PLL) circuit includes circuitry for preventing an erroneous condition in charge pump operation. The PLL circuit is modified by adding delay elements for connection between the phase frequency detector and the charge pump. A digital logic circuit is also included to provide the clock signals for the loop filter wherein the clock signals have rising edges corresponding to an earlier occurring rising edge of either of the output signals from the phase-frequency detector.
Abstract:
A system and method for reducing the re-lock time of a phase locked loop (PLL) system, the system including a circuit having a capture control voltage module, a force control voltage module, a loop filter module, and a timer. The capture control voltage module compares the control voltage (voltage input of VCO) with predefined voltage levels during the lock time of the PLL and simultaneously stores the voltage level closest to the control voltage. The stored voltage becomes stable after the PLL has been locked. After power-down is applied and then released, the force control voltage module forces the stored control voltage on the loop filter in a very short time, thereby reducing the re-lock time of the PLL. The loop filter module stabilizes the control voltage. The timer then turns off the force control voltage module by sending a timeout signal after a pre-defined number of clock cycles.
Abstract:
A phase locked loop (PLL) architecture provides voltage controlled oscillator (VCO) gain compensation across process and temperature. A simulator may be used to calculate the control voltages for the maximum and minimum output frequency of the VCO for each combination of the process and temperature corners. The maximum and minimum values of control voltage are then selected from these control voltages. Using a counter, the number of cycles of VCO in some cycles of the PLL input clock are counted in binary form and stored in latches for the extreme control voltages. The difference between them and the corresponding difference for typical process and temperature corner is used to modify the charge pump to change the current delivered to the loop filter. After the charge pump bits have been decided, the input control voltage of the VCO connects to the charge pump output to start the normal operation of the PLL.
Abstract:
An apparatus for measuring time interval between two edges of a clock signal and includes an edge generator, a first multi-tap delay module, a second multi-tap delay module, and a multi-element phase detector. The edge generator produces a first edge at a first output node and a second selected edge at a second output node. First multi-tap delay module provides a first incremental delay at each tap to the first edge. Second multi-tap delay module provides a second incremental delay at each tap to the second selected edge. Each element of the multi-element phase detector has first and second input terminals. The first input terminal is coupled to a selected tap of the first multi-tap delay module and the second input terminal is coupled to a corresponding tap of the second multi-tap delay module. The output terminals of the multi-element phase detector provide the value of the time interval.