Abstract:
Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
Abstract:
The present invention provides an olefin oligomerization process comprising the steps of: i) reducing the level of acetonitrile in an olefin feed by contacting the feed with a non-zeolitic metal oxide; and ii) contacting the olefin feed with reduced level of acetonitrile with an olefin oligomerization catalyst under conditions suitable to oligomerize the olefin.
Abstract:
A method for making a new crystalline molecular sieve designated SSZ-27 is disclosed. SSZ-27 is synthesized using a hexamethyl [4.3.3.0] propellane-8,11-diammonium cation as a structure directing agent.
Abstract:
A new crystalline molecular sieve designated SSZ-27 is disclosed. SSZ-27 is synthesized using a hexamethyl [4.3.3.0] propellane-8,11-diammonium cation as a structure directing agent.
Abstract:
Small crystal LTL framework type zeolites, characterized as polycrystalline aggregates, each of the aggregates comprising a plurality of spherical or cube-like crystallites and wherein each crystallite has an average crystallite size of from 10 to 50 nm, are disclosed. Such zeolites can be prepared by hydrothermal conversion of FAU framework type zeolites at low H2O/SiO2 mole ratios.
Abstract translation:小晶体LTL骨架型沸石,其特征在于多晶聚集体,每个聚集体包含多个球形或立方体微晶,并且其中每个微晶具有10至50nm的平均微晶尺寸。 这种沸石可以通过以低H 2 O / SiO 2摩尔比的FAU骨架型沸石的水热转化来制备。
Abstract:
A process and system are described for the processing of gas associated with crude oil production, i.e. associated gas. A separation complex is used to separate produced fluids produced from a hydrocarbon reservoir into crude oil, liquefied petroleum gas, water, and natural gas. At least a portion of the natural gas is converted into synthesis gas in a synthesis gas generator. A combination of a synthesis gas conversion catalysts and hydroconversion catalysts are used in a synthesis gas reactor to convert the synthesis gas into a liquid effluent stream containing liquefied petroleum gas and a synthetic crude oil. The liquefied petroleum gas and synthetic crude oil from the synthesis gas reactor is sent to the separation complex. Liquefied petroleum gas is separated both from the synthetic crude oil and a natural crude oil obtained from the produced fluids. The system and process permits synthetic crude oil to be blended with the natural crude oil producing a blended stabilized crude oil having 2 wt % or more of the synthetic crude oil and with a pour point of 60° C. or less. Use of a common facility for separation operations on the natural crude oil and synthetic crude oil thus reduces capital costs and allows converted associated gases to be shipped with the natural crude oil on a conventional crude oil tanker.
Abstract:
A process and system are described for producing a synthetic crude oil by contacting a synthesis gas with a combination of a synthesis gas conversion catalyst and a hydroconversion catalyst in a synthesis gas reactor. The synthesis gas can be obtained from gas associated with crude oil production, i.e., associated gas, in a synthesis gas generator. The synthetic crude oil can be blended with a natural crude oil to produce a blended stabilized crude oil having 2 wt % or more of the synthetic crude oil. The resulting blended stabilized crude oil has improved flow characteristics including a pour point of 30° C. or less.