摘要:
In one exemplary embodiment of the invention, a semiconductor structure includes: a substrate; and a plurality of devices at least partially overlying the substrate, where the plurality of devices include a first device coupled to a second device via a first raised source/drain having a first length, where the first device is further coupled to a second raised source/drain having a second length, where the first device comprises a transistor, where the first raised source/drain and the second raised source/drain at least partially overly the substrate, where the second raised source/drain comprises a terminal electrical contact, where the second length is greater than the first length.
摘要:
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate; forming a spacer layer over the semiconductor substrate and patterned gate structure; removing horizontally disposed portions of the spacer layer so as to form a vertical sidewall spacer adjacent the patterned gate structure; and forming a raised source/drain (RSD) structure over the semiconductor substrate and adjacent the vertical sidewall spacer, wherein the RSD structure has a substantially vertical sidewall profile so as to abut the vertical sidewall spacer and produce one of a compressive and a tensile strain on a channel region of the semiconductor substrate below the patterned gate structure.
摘要:
An FET device structure has a Fin-FET device with a fin of a Si based material. An oxide element is abutting the fin and exerts pressure onto the fin. The Fin-FET device channel is compressively stressed due to the pressure on the fin. A further FET device structure has Fin-FET devices in a row. An oxide element extending perpendicularly to the row of fins is abutting the fins and exerts pressure onto the fins. Device channels of the Fin-FET devices are compressively stressed due to the pressure on the fins.
摘要:
An integrated circuit comprising an N+ type layer, a buffer layer arranged on the N+ type layer; a P type region formed on with the buffer layer; an insulator layer overlying the N+ type layer, a silicon layer overlying the insulator layer, an embedded RAM FET formed in the silicon layer and connected with a conductive node of a trench capacitor that extends into the N+ type layer, the N+ type layer forming a plate electrode of the trench capacitor, a first contact through the silicon layer and the insulating layer and electrically connecting to the N+ type layer, a first logic RAM FET formed in the silicon layer above the P type region, the P type region functional as a P-type back gate of the first logic RAM FET, and a second contact through the silicon layer and the insulating layer and electrically connecting to the P type region.
摘要:
An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
摘要翻译:集成电路包括在BOX下方具有单一N +层的SOI衬底,N +层中的P区,N +板的eDRAM和P区上方的逻辑/ SRAM器件。 P区域用作逻辑/ SRAM器件的后门。 可以在P背栅层和N +层之间形成可选的本征(未掺杂)层,以减少结场并降低P背栅与N +层之间的结泄漏。 在另一个实施例中,可以在P区中形成N或N +背栅。 N +后门作为逻辑/ SRAM器件的第二个后门。 SOI eDRAM的N +板,P背栅极和N +背栅极可以在相同或不同的电压电位下被电偏置。 还公开了制造集成电路的方法。
摘要:
Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
摘要:
Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
摘要:
A method of manufacturing a FinFET non-volatile memory device and a FinFET non-volatile memory device structure. A substrate is provided and a layer of semiconductor material is deposited over the substrate. A hard mask is deposited over the semiconductor material and the structure is patterned to form fins. A charge storage layer is deposited over the structure, including the fins and the portions of it are damaged using an angled ion implantation process. The damaged portions are removed and gate structures are formed on either side of the fin, with only one side having a charge storage layer.
摘要:
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate; forming a spacer layer over the semiconductor substrate and patterned gate structure; removing horizontally disposed portions of the spacer layer so as to form a vertical sidewall spacer adjacent the patterned gate structure; and forming a raised source/drain (RSD) structure over the semiconductor substrate and adjacent the vertical sidewall spacer, wherein the RSD structure has a substantially vertical sidewall profile so as to abut the vertical sidewall spacer and produce one of a compressive and a tensile strain on a channel region of the semiconductor substrate below the patterned gate structure.
摘要:
An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
摘要翻译:集成电路包括在BOX下方具有单一N +层的SOI衬底,N +层中的P区,N +板的eDRAM和P区上方的逻辑/ SRAM器件。 P区域用作逻辑/ SRAM器件的后门。 可以在P背栅层和N +层之间形成可选的本征(未掺杂)层,以减少结场并降低P背栅与N +层之间的结泄漏。 在另一个实施例中,可以在P区中形成N或N +背栅。 N +后门作为逻辑/ SRAM器件的第二个后门。 SOI eDRAM的N +板,P背栅极和N +背栅极可以在相同或不同的电压电位下被电偏置。 还公开了制造集成电路的方法。