摘要:
A method, apparatus and system are provided for relieving stress in the via structures of semiconductor structures whenever a linewidth below a via is larger than a ground-rule, including providing a via at least as large as the groundrule, providing a landing pad above the via, providing a via bar in place of a via, slotting the metal linewidth below the via, or providing an oversize via with a sidewall spacer.
摘要:
Interconnect layers on a semiconductor body containing logic circuits (microprocessors, Asics or others) or random access memory cells (DRAMS) are formed in a manner to significantly reduce the number of shorts between adjacent conductor/vias with narrow separations in technologies having feature sizes of 0.18 microns or smaller. This is accomplished by etching to form recessed copper top surfaces on each layer after a chemical-mechanical polishing process has been completed. The thickness of an applied barrier layer, on the recessed copper surfaces, is controlled to become essentially co-planar with the surrounding insulator surfaces. A thicker barrier layer eliminates the need for a capping layer. The elimination of a capping layer results in a reduction in the overall capacitive coupling, stress, and cost.
摘要:
A method, apparatus and system are provided for relieving stress in the via structures of semiconductor structures whenever a linewidth below a via is larger than a ground-rule, including providing a via at least as large as the groundrule, providing a landing pad above the via, providing a via bar in place of a via, slotting the metal linewidth below the via, or providing an oversize via with a sidewall spacer.
摘要:
Process of making a semiconductor using dual inorganic hardmask in single damascene process integration scheme in an organic low k interlayer dielectric (ILD) by: providing semiconductor substrate; depositing organic low k ILD layer on substrate; forming hardmask 1 on organic low k ILD layer and forming sacrificial hardmask 2 on hardmask 1; forming a patterned photoresist layer on sacrificial hardmask 2; etching selective to sacrificial hardmask 2 and stripping photoresist; etching of hardmask 1 in which the etch is selective to the organic low k ILD layer; depositing a liner or conformal barrier layer over the substrate, organic low k ILD layer, hardmask 1 and hardmask 2; forming a plated metal layer over the liner or conformal barrier layer; and removing metal layer and removing liner with simultaneous removal of sacrificial hardmask 2 so that facets in sacrificial hardmask 2 are removed during liner/sacrificial hardmask 2 removal.
摘要:
A conductive line is formed in a first insulating layer. A second insulating layer is formed over the conductive line and the first insulating layer. A via extends through the second insulating layer to contact at least the top surface of the conductive line. The via also extends through the first insulating layer to contact at least a top portion of at least one sidewall of the conductive line. The conductive line sidewall may include an outwardly extending hook region, so that a portion of the via is disposed beneath the conductive line hook region, forming a locking region within the via proximate the conductive line hook region.
摘要:
A method of fabricating a semiconductor device having a dielectric structure on which an interconnect structure is optionally patterned using lithographic and etching techniques, within a single deposition chamber, is provided. The dielectric structure may optionally be covered by diffusion barrier materials prior to a sputter etching process. This sputter etching process is used to remove the native oxide on an underneath metal conductor surface and includes a directional gaseous bombardment with simultaneous deposition of metal neutral. Diffusion barrier materials may also be deposited into the pattern.
摘要:
A method for removal of post reactive ion etch by-product from a semiconductor wafer surface or microelectronic composite structure comprising: supplying a reducing gas plasma incorporating a forming gas mixture selected from the group consisting of a mixture of N2/H2 or a mixture of NH3/H2 into a vacuum chamber in which a semiconductor wafer surface or a microelectronic composite structure is supported to form a post-RIE polymer material by-product on the composite structure without significant removal of an organic, low K material which has also been exposed to the reducing gas plasma; and removing the post-RIE polymer material by-product with a wet clean.
摘要:
A method of forming a composite intermetal dielectric structure is provided. An initial intermetal dielectric structure is provided, which includes a first dielectric layer and two conducting lines. The two conducting lines are located in the first dielectric layer. A portion of the first dielectric layer is removed between the conducting lines to form a trench. The trench is filled with a second dielectric material. The second dielectric material is a low-k dielectric having a dielectric constant less than that of the first dielectric layer.
摘要:
Thermo-mechanical stress on vias is reduced, thereby reducing related failures. This can be done by maintaining a via-to-metal area ratio at least as large as a predetermined value below which the additional stress on the vias does not significantly increase.
摘要:
The act of blowing an unpassivated electrical fuse (for example, fuse 405) using a laser can result in the splattering of the fuse material and result in electrical short circuits. A blast barrier (for example blast barrier 406) formed around an area of the fuse that is blown by the laser helps to contain the splattering of the fuse material. The blast barrier may be formed from the same material as the fuses themselves and, therefore, can be created in the same fabrication step.