摘要:
Semiconductor devices, methods of manufacturing thereof, lithography masks, and methods of designing lithography masks are disclosed. In one embodiment, a semiconductor device includes a plurality of first features disposed in a first material layer. At least one second feature is disposed in a second material layer, the at least one second feature being disposed over and coupled to the plurality of first features. The at least one second feature includes at least one void disposed between at least two of the plurality of first features.
摘要:
Semiconductor devices, methods of manufacturing thereof, lithography masks, and methods of designing lithography masks are disclosed. In one embodiment, a semiconductor device includes a plurality of first features disposed in a first material layer. At least one second feature is disposed in a second material layer, the at least one second feature being disposed over and coupled to the plurality of first features. The at least one second feature includes at least one void disposed between at least two of the plurality of first features.
摘要:
Methods of forming a three-dimensional capacitor network may include forming a first horizontal MIM capacitor on a semiconductor substrate and forming a first interlayer insulating layer on the first horizontal MIM capacitor. A first vertical capacitor electrode is then formed in the first interlayer insulating layer and a second horizontal MIM capacitor is formed on the first interlayer insulating layer. This second horizontal MIM capacitor may be formed by forming an upper capacitor electrode and a lower capacitor electrode. The upper capacitor electrode may be electrically connected by the first vertical capacitor electrode to an upper capacitor electrode of the underlying first MIM capacitor. The lower capacitor electrode, which may be formed in the first interlayer insulating layer, may extend opposite the upper electrodes of the first and second MIM capacitors.
摘要:
Methods of fabricating semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a method of manufacturing a semiconductor device includes providing a semiconductor wafer, forming a first insulating material over the semiconductor wafer, and forming a plurality of first features and a plurality of second features in the first insulating material. The plurality of first features is removed, leaving an unfilled pattern in the first insulating material. The unfilled pattern in the first insulating material is filled with a second insulating material.
摘要:
An electro chemical deposition system is described for forming a feature on a semiconductor wafer. The electro chemical deposition is performed by powering electrodes that includes a cathode, an anode and a plurality of electrically independent auxiliary electrodes.
摘要:
Methods of forming integrated circuit devices include patterning an electrically insulating layer to support dual-damascene interconnect structures therein. The steps of patterning the electrically insulating layer include using multiple planarization layers having different porosity characteristics. Forming an interconnect structure within an integrated circuit device may include forming an electrically insulating layer on a substrate and forming at least one via hole extending at least partially through the electrically insulating layer. The at least one via hole is filled with a first electrically insulating material having a first porosity. The filled at least one via hole is then covered with a second electrically insulating material layer having a second porosity lower than the first porosity. The second electrically insulating material layer is selectively etched back to expose a first portion of the first electrically insulating material in the at least one via hole. The electrically insulating layer is selectively etched to define a trench therein that exposes a second portion of the first electrically insulating material in the at least one via hole.
摘要:
A design for a crack stop and moisture barrier for a semiconductor device includes a plurality of discrete conductive features formed at the edge of an integrated circuit proximate a scribe line. The discrete conductive features may comprise a plurality of staggered lines, a plurality of horseshoe-shaped lines, or a combination of both.
摘要:
Methods of forming a three-dimensional capacitor network may include forming a first horizontal MIM capacitor on a semiconductor substrate and forming a first interlayer insulating layer on the first horizontal MIM capacitor. A first vertical capacitor electrode is then formed in the first interlayer insulating layer and a second horizontal MIM capacitor is formed on the first interlayer insulating layer. This second horizontal MIM capacitor may be formed by forming an upper capacitor electrode and a lower capacitor electrode. The upper capacitor electrode may be electrically connected by the first vertical capacitor electrode to an upper capacitor electrode of the underlying first MIM capacitor. The lower capacitor electrode, which may be formed in the first interlayer insulating layer, may extend opposite the upper electrodes of the first and second MIM capacitors.
摘要:
An oxide layer is used to seal pores in porous low-dielectric constant materials, thus preventing the migration of subsequently deposited copper materials into the porous low-dielectric constant materials in damascene processes. The oxide layer is deposited over the inner surface of at least one pore along a sidewall of the patterned low-dielectric constant material. In one embodiment, the oxide layer is deposited using atomic layer deposition (ALD), and the oxide layer comprises SiO2.
摘要:
There is provided a method for fabricating a semiconductor device, by which passivation layers are formed with good step coverage to prevent crack or void from being occurred in high aspect ratio of metallization layers and the time for performing the processes can be decreased to enhance the productability and the yield of the device. The method is performed as follows. Over a substrate having completed metallization layers, an oxide layer is formed as a first passivation layer by high-density plasma chemical vapor deposition (HDP-CVD). On the HDP-CVD oxide layer, a nitride layer is formed as a second passivation layer by plasma enhanced chemical vapor deposition (PECVD) or HDP-CVD.