摘要:
A conductive reflective film which is formed by calcining a substrate on which a composition containing metal nanoparticles is coated, the conductive reflective film including pores which appear on the film contact surface in the substrate side having an average diameter of 100 nm or less, an average depth of 100 nm or less in terms of position of the pores, and a number density of the pores of 30 pores/μm2 or less.
摘要:
A conductive reflective film which is formed by calcining a substrate on which a composition containing metal nanoparticles is coated, the conductive reflective film including pores which appear on the film contact surface in the substrate side having an average diameter of 100 nm or less, an average depth of 100 nm or less in terms of position of the pores, and a number density of the pores of 30 pores/μm2 or less.
摘要:
A conductive reflective film which is formed by calcining a substrate on which a composition containing metal nanoparticles is coated, the conductive reflective film including pores which appear on the film contact surface in the substrate side having an average diameter of 100 nm or less, an average depth of 100 nm or less in terms of position of the pores, and a number density of the pores of 30 pores/μm2 or less.
摘要:
A composition for manufacturing an electrode of a solar cell, comprising metal nanoparticles dispersed in a dispersive medium, wherein the metal nanoparticles contain silver nanoparticles of 75 weight % or more, the metal nanoparticles are chemically modified by a protective agent having a main chain of organic molecule comprising a carbon backbone of carbon number of 1 to 3, and the metal nanoparticles contains 70% or more in number-average of metal nanoparticles having a primary grain size within a range of 10 to 50 nm.
摘要:
This composition for an antireflective film includes a translucent binder, wherein the translucent binder contains either one or both of a polymer type binder and a non-polymer type binder, a content of the translucent binder is in a range of 10 parts by mass to 90 parts by mass with respect to 100 parts by mass of a total amount of components other than a dispersion medium, and a refractive index of an antireflective film which is formed by curing the composition for an antireflective film is in a range of 1.70 to 1.90. This method for manufacturing an antireflective film includes: applying the above-described composition for an antireflective film onto a transparent conductive film by a wet coating method to form an antireflective coating film; and curing the antireflective coating film to form an antireflective film.
摘要:
A light emitting element having a light emitting layer, an electro-conductive reflection film that reflects light emitted from the light emitting layer and a substrate in this order, wherein the electro-conductive reflection film contains metal nanoparticles.
摘要:
The present invention is directed to a system for pre-treatment of a sample to be introduced in a chromatograph, and a method for performing solid-phase extraction of a component present in a sample. The system uses a syringe having a needle being provided with a porous body having a monolithic structure along at least an appropriate length of the needle and across an overall diameter of the needle. The method includes the steps of inserting the needle into the sample, passing the sample through the needle to retain an analyte within the porous body, and desorbtion of the retained analyte from the porous body.
摘要:
A sample trapping method and apparatus uses a sample conduit for trapping a gas sample by cooling or desorbing the gas sample by heating. The sample conduit may be cooled by arranging the sample conduit in the vicinity of, or bringing the sample conduit into contact with, a cooling part of a cooling device based on a cold storage refrigerator.
摘要:
A light emitting element having a light emitting layer, an electro-conductive reflection film that reflects light emitted from the light emitting layer and a substrate in this order, wherein the electro-conductive reflection film contains metal nanoparticles.