Abstract:
An f&thgr; lens containing a first lens group having an object-side convex positive lens, a second lens group having an object-side concave negative lens, a third lens group having a positive refractive power, the third lens group being a single positive lens, an assembly of a positive lens and a negative lens or another assembly of a positive lens and another positive lens. The lens components satisfy the conditions (a) to (c); (a) −2.2≦f2/f≦−0.3 (31) (b) 0.4≦f3/f≦0.9 (32) (c) 1.8≦d/f≦2.4. (33) where f2 is the focal length of the second lens group, f3 is the focal length of the third lens group, f is the focal length of the whole lens system and d is the distance from the front focus to the image plane. The material of the lens is zinc selenide (ZnSe) or germanium (Ge). Adoption of an aspherical lens facilitates the design of the f&thgr; lens.
Abstract:
In a laser optical device including a beam shaping optical system 3 for shaping a laser beam 2 into a predetermined cross-sectional intensity distribution and converging the light and an image formation optical system 6 for forming an image of a shaped beam 4 shaped and converged through the beam shaping optical system 3, the image formation optical system 6 is made up of an objective lens system 8 having a negative focal length placed ahead of a focal plane 7 of the beam shaping optical system 3 and an imaging lens system 9 placed behind the objective lens system 8.
Abstract:
A conventional diffractive optical element (DOE), which consists of repetition of a unit pattern Υ, has an advantage of applicability of the Fast Fourier Transform algorithm to calculate diffraction beam spots intensities on lattice points on an image plane. But, the conventional DOE has a drawback of impossibility of diffracting a laser beam off the lattice points. This invention designs a DOE by giving arbitrary complex amplitude transmittance {tmn} to every pixel (m, n), calculating actual Fourier transform from {tmn} to intensity W(α, β), and obtaining intensity of a diffraction beam directing in any a and 0 direction. Since α, β are not necessary to be on lattice points, the FFT is of no use. Angular resolutions U and V satisfy inequalities U
Abstract:
A laser beam emitted from a laser source is split by a beam-splitting means such as a beam sampler, and the power Q of the split beam is measured by a first detector. In addition, the power q1 of light that has passed through a pinhole while a DOE is not set is measured by a second detector, and the power ratio α=q1/Q is calculated. Then, the DOE is set and the power ratio βk=qk/Q, where qk is the power of each light beam, is calculated. The power ratio βk is evaluated on the basis of the power ratio α, so the optical properties of a diffractive optical element, in particular, in terms of diffraction efficiency in laser-beam diffraction and intensity uniformity of split beams can be measured with high accuracy.
Abstract translation:从激光源发射的激光束被诸如光束采样器之类的光束分离装置分开,并且分割光束的功率Q由第一检测器测量。 此外,通过第二检测器测量未通过DOE通过针孔的光的功率q 1,并且功率比α= q 1 / / Q计算。 然后,设置DOE,并且功率比βQ k = Q k k,其中q k是每个光束的功率, 被计算。 基于功率比α来评估功率比βk,因此衍射光学元件的光学性质,特别是在激光束衍射中的衍射效率和强度均匀性方面 可以高精度地测量分束。
Abstract:
The present invention provides a different optical element having superior optical characteristics. A polycrystalline substrate having crystal grains whose sizes are not more than 1 &mgr;m or an amorphous phase at the dry-etched surface thereof, or an upper film layer 8 formed on a polycrystalline substrate 1 being the same materials as that of the polycrystalline substrate 1, which has finer crystal grains than-those of the substrate. The upper film layer 8 is dry etched, and AR coat 6 is formed thereon.
Abstract:
A condensing optical system having a condensed light spot with a small size and a large focal depth without causing a problem of a decrease in intensity of the condensed light spot or discontinuity of an intensity distribution in front and rear areas of a focal position is provided. The condensing optical system that condenses a laser beam generated by a laser source at a predetermined focal length is designed to satisfy Expressions (a) to (d), thereby producing 3rd and 5th spherical aberrations: |Z8|≧0.1λ or |Z15|≧0.05λ, (a) Z8/Z15≧3 or Z8/Z15
Abstract:
The present invention relates to a laser processing method and laser processing apparatus for enabling improvement and maintenance of homogenization of a beam intensity distribution in an irradiated region. The laser processing apparatus comprises, at least, an ASE light generation section for emitting ASE light, and a homogenizer for splitting the ASE light into multiple beams. The ASE generation section for emitting the ASE light as processing laser light is provided, and whereby the deterioration of homogenization due to inter-beam interference is suppressed. The homogenization of beam intensity distribution is improved by locating a condenser lens relative to an object such that the object is shifted from a focus position of the condenser lens in the homogenizer, by intentionally deteriorating a beam quality M2 of the ASE light itself emitted from the ASE light generation section to about 2 to 10, or by a combination of these, in laser processing.
Abstract:
A single lens homogenizer for converting a wide, parallel, in-phase Gaussian beam into a narrow uniform-power beam and shooting an object with the narrow uniform-power beam is proposed. A tilt error induces beam deformation. A single lens homogenizer which can reduce the beam deformation induced by the tilt error is proposed. A suitable homogenizer is a convex/flat lens having a convex aspherical surface on the light source side and a flat surface on the object side. Another preferable homogenizer is a convex/convex lens having a convex surface on the light source side and a convex surface on the object side. At least one of the convex surfaces is an aspherical convex surface.
Abstract:
A single lens homogenizer for converting a wide, parallel, in-phase Gaussian beam into a narrow uniform-power beam and shooting an object with the narrow uniform-power beam is proposed. A tilt error induces beam deformation. A single lens homogenizer which can reduce the beam deformation induced by the tilt error is proposed. A suitable homogenizer is a convex/flat lens having a convex aspherical surface on the light source side and a flat surface on the object side. Another preferable homogenizer is a convex/convex lens having a convex surface on the light source side and a convex surface on the object side. At least one of the convex surfaces is an aspherical convex surface.
Abstract:
A unit for splitting a laser beam into a plurality of beams is provided separately from a converging unit so that both units can be manufactured easily, replaced at low cost and are less likely to be polluted or damaged during laser machining. A laser beam produced by a laser oscillator and guided into a machining head through a transmitter is split into a plurality of beams by a plane reflecting mirror. The laser beams thus split are reflected by another reflecting mirror having a single paraboloidal surface so as to be converged on focal points. The first plane reflecting mirror comprises two semicircular mirrors which can be inclined independently of each other.