摘要:
A silicon/germanium (SiGe) superlattice thermal sensor is provided with a corresponding fabrication method. The method forms an active CMOS device in a first Si substrate, and a SiGe superlattice structure on a second Si-on-insulator (SOI) substrate. The first substrate is bonded to the second substrate, forming a bonded substrate. An electrical connection is formed between the SiGe superlattice structure and the CMOS device, and a cavity is formed between the SiGe superlattice structure and the bonded substrate.
摘要:
An optical device with an iridium oxide (IrOx) electrode neural interface, and a corresponding fabrication method are provided. The method provides a substrate and forms a first conductive electrode overlying the substrate. A photovoltaic device having a first electrical interface is connected to the first electrode. A second electrical interface of the photovoltaic device is connected to a second conductive electrode formed overlying the photovoltaic device. An array of neural interface single-crystal IrOx nanostructures are formed overlying the second electrode, where x≦4. The IrOx nanostructures can be partially coated with an electrical insulator, such as SiO2, SiN, TiO2, or spin on glass (SOG), leaving the IrOx distal ends exposed. In one aspect, a buffer layer is formed overlying the second electrode surface, made from a material such as LiNbO3, LiTaO3, or SA, for the purpose of orienting the growth direction of the IrOx nanostructures.
摘要:
A method of making CMOS devices on strained silicon on glass includes preparing a glass substrate, including forming a strained silicon layer on the glass substrate; forming a silicon oxide layer by plasma oxidation of the strained silicon layer; depositing a layer of doped polysilicon on the silicon oxide layer; forming a polysilicon gate; implanting ions to form a LDD structure; depositing and forming a spacer dielectric on the gate structure; implanting and activation ions to form source and drain structures; depositing a layer of metal film; annealing the layer of metal film to form salicide on the source, drain and gate structures; removing any unreacted metal film; depositing a layer of interlayer dielectric; and forming contact holes and metallizing.
摘要:
A method is provided for forming a NanoElectroChemical (NEC) cell. The method provides a bottom electrode with a top surface. Nanowire shells are formed. Each nanowire shell has a nanowire and a sleeve, with the nanowire connected to the bottom electrode top surface. A top electrode is formed overlying the nanowire shells. A main cavity is formed between the top electrode and bottom electrodes, partially displaced by a first plurality of nanowire shells. Electrolyte cavities are formed between the sleeves and nanowires by etching the first sacrificial layer. In one aspect, electrolyte cavities are formed between the bottom electrode top surface and a shell coating layer joining the sleeve bottom openings. Then, the main and electrolyte cavities are filled with either a liquid or gas phase electrolyte. In a different aspect, the first sacrificial layer is a solid phase electrolyte that is not etched away.
摘要:
A method of fabricating a continuous layer of a defect sensitive material on a silicon substrate includes preparing a silicon substrate; forming a nanostructure array directly on the silicon substrate; depositing a selective growth enhancing layer on the substrate; smoothing the selective growth enhancing layer; and growing a continuous layer of the defect sensitive material on the nanostructure array.
摘要:
A method of fabricating an electroluminescent device includes, on a prepared substrate, depositing a rare earth-doped silicon-rich layer on gate oxide layer as a light emitting layer; and annealing and oxidizing the structure to repair any damage caused to the rare earth-doped silicon-rich layer; and incorporating the electroluminescent device into a CMOS IC. An electroluminescent device fabricated according to the method of the invention includes a substrate, a rare earth-doped silicon-rich layer formed on the gate oxide layer for emitting a light of a pre-determined wavelength; a top electrode formed on the rare earth-doped silicon-rich layer; and associated CMOS IC structures fabricated thereabout.
摘要:
A dual gate strained-Si MOSFET with thin SiGe dislocation regions and a method for fabricating the same are provided. The method forms a first layer of relaxed SiGe overlying a substrate, having a thickness of less than 5000 Å; forms a second layer of relaxed SiGe overlying the substrate and adjacent to the first layer of SiGe, having a thickness of less than 5000 Å; forms a layer of strained-Si overlying the first and second SiGe layers; forms a shallow trench isolation region interposed between the first SiGe layer and the second SiGe layer; forms an p-well in the substrate and the overlying first layer of SiGe; forming forms a p-well in the substrate and the overlying second layer of SiGe; forms channel regions, in the strained-Si, and forms PMOS and NMOS transistor source and drain regions.
摘要:
A method of fabricating local interconnect on a silicon-germanium 3D CMOS includes fabricating an active silicon CMOS device on a silicon substrate. An insulator layer is deposited on the silicon substrate and a seed window is opened through the insulator layer to the silicon substrate and to a silicon CMOS device gate. A germanium thin film is deposited on the insulator layer and into windows, forming a contact between the germanium thin film and the silicon device. The germanium thin film is encapsulated in a dielectric material. The wafer is heated at a temperature sufficient to flow the germanium, while maintaining the other layers in a solid condition. The wafer is cooled to solidify the germanium as single crystal germanium and as polycrystalline germanium, which provides local interconnects. Germanium CMOS devices may be fabricated on the single crystal germanium thin film.
摘要:
A method of controlling strain in a single-crystal, epitaxial oxide film, includes preparing a silicon substrate; forming a silicon alloy layer taken from the group of silicon alloy layer consisting of Si1-xGex and Si1-yCy on the silicon substrate; adjusting the lattice constant of the silicon alloy layer by selecting the alloy material content to adjust and to select a type of strain for the silicon alloy layer; depositing a single-crystal, epitaxial oxide film, by atomic layer deposition, taken from the group of oxide films consisting of perovskite manganite materials, single crystal rare-earth oxides and perovskite oxides, not containing manganese; and rare earth binary and ternary oxides, on the silicon alloy layer; and completing a desired device.
摘要翻译:一种控制单晶外延氧化膜中的应变的方法包括制备硅衬底; 从由Si 1-x Ge x Si和Si 1-y C C组成的硅合金层组形成硅合金层 > y sub>; 通过选择合金材料含量来调整硅合金层的晶格常数,并选择一种用于硅合金层的应变; 从由不含锰的钙钛矿亚锰酸盐材料,单晶稀土氧化物和钙钛矿氧化物组成的氧化膜组中,通过原子层沉积法沉积单晶外延氧化膜; 和稀土二元和三元氧化物,在硅合金层上; 并完成所需的设备。
摘要:
A compound semiconductor-on-silicon (Si) wafer with a Si nanowire buffer layer is provided, along with a corresponding fabrication method. The method forms a Si substrate. An insulator layer is formed overlying the Si substrate, with Si nanowires having exposed tips. Compound semiconductor is selectively deposited on the Si nanowire tips. A lateral epitaxial overgrowth (LEO) process grows compound semiconductor from the compound semiconductor-coated Si nanowire tips, to form a compound semiconductor layer overlying the insulator. Typically, the insulator layer overlying the Si substrate is a thermally soft insulator (TSI), silicon dioxide, or SiXNY, where X≦3 and Y≦4. The compound semiconductor can be GaN, GaAs, GaAlN, or SiC. In one aspect, the Si nanowire tips are carbonized, and SiC is selectively deposited overlying the carbonized Si nanowire tips, prior to the selective deposition of compound semiconductor on the Si nanowire tips.
摘要翻译:提供了具有Si纳米线缓冲层的化合物半导体硅(Si)晶片以及相应的制造方法。 该方法形成Si衬底。 在Si衬底上形成绝缘体层,Si纳米线具有暴露的尖端。 化合物半导体选择性沉积在Si纳米线尖端上。 横向外延生长(LEO)工艺从化合物半导体涂覆的Si纳米线尖端生长化合物半导体,以形成覆盖绝缘体的化合物半导体层。 通常,覆盖Si衬底的绝缘体层是热软绝缘体(TSI),二氧化硅或Si X SMALLCAPS> N Y SMALLCAPS>,其中 X SMALLCAPS> <= 3 AND Y SMALLCAPS> <= 4。 化合物半导体可以是GaN,GaAs,GaAlN或SiC。 在一个方面,将Si纳米线尖端碳化,并且在Si纳米线尖端上选择性沉积化合物半导体之前,选择性地将SiC沉积在碳化Si纳米线尖端上。