摘要:
A substrate processing method includes applying electroless plating of CoWB onto a Cu interconnection line formed on a wafer W, and then performing a post-cleaning process by use of a cleaning liquid on the target substrate or wafer before a by-product is precipitated on the surface of the CoWB film formed by the electroless plating to cover the Cu interconnection line.
摘要:
A substrate processing method includes applying electroless plating of CoWB onto a Cu interconnection line formed on a wafer W, and then performing a post-cleaning process by use of a cleaning liquid on the target substrate or wafer before a by-product is precipitated on the surface of the CoWB film formed by the electroless plating to cover the Cu interconnection line.
摘要:
A CoWB film is formed as a cap metal on a Cu interconnection line formed on a substrate or wafer W, by repeating a plating step and a post-cleaning step a plurality of times. The plating step is arranged to apply electroless plating containing CoWB onto the Cu interconnection line. The post-cleaning step is arranged to clean the wafer W by use of a cleaning liquid, after the plating step.
摘要:
A CoWB film is formed as a cap metal on a Cu interconnection line formed on a substrate or wafer W, by repeating a plating step and a post-cleaning step a plurality of times. The plating step is arranged to apply electroless plating containing CoWB onto the Cu interconnection line. The post-cleaning step is arranged to clean the wafer W by use of a cleaning liquid, after the plating step.
摘要:
A liquid treatment apparatus of continuously performing a plating process on multiple substrates includes a temperature controlling container for accommodating a plating liquid; a temperature controller for controlling a temperature of the plating liquid in the temperature controlling container; a holding unit for holding the substrates one by one at a preset position; a nozzle having a supply hole through which the temperature-controlled plating liquid in the temperature controlling container is discharged to a processing surface of the substrate; a pushing unit for pushing the temperature-controlled plating liquid in the temperature controlling container toward the supply hole of the nozzle; and a supply control unit for controlling a timing when the plating liquid is pushed by the pushing unit. The temperature controller controls the temperature of the plating liquid in the temperature controlling container based on the timing when the plating liquid is pushed by the pushing unit.
摘要:
A film of uniform thickness can be formed on the entire surface of a substrate. A processing solution supply apparatus includes: a nozzle provided with a supply hole for discharging a plating solution toward a processing surface of a substrate held in a substantially horizontal direction; a temperature controller for accommodating therein the plating solution in an amount necessary for processing a preset number of substrates, for controlling a temperature of the accommodated plating solution up to a preset temperature; a heat insulator disposed between the nozzle and the temperature controller, for maintaining the plating solution, whose temperature has been controlled by the temperature controller, at the preset temperature; and a transporting mechanism for transporting the plating solution, whose temperature has been controlled up to the preset temperature by the temperature controller, toward the supply hole of the nozzle via the heat insulator.
摘要:
A catalyst adsorption method can sufficiently adsorb a catalyst to a lower portion of a recess formed in a substrate. A substrate 20 in which a recess 22 is formed is prepared. Then, a catalyst 23 formed of nanoparticles coated with a dispersant is adsorbed to a surface of the substrate 20 by bringing the substrate 20 into contact with a catalyst solution 12 containing the catalyst by a catalyst adsorption device 10. At that time, a high frequency vibration is applied to the catalyst solution 12.
摘要:
A liquid displacement is performed by supplying a plating liquid onto a substrate 2 while rotating the substrate 2 at a first rotational speed in a state that a pre-treatment liquid remains on a surface of the substrate 2 (liquid displacement process (block S305)). Then, an initial film is formed on the substrate 2 by stopping the rotation of the substrate 2 or by rotating the substrate 2 at a second rotational speed while continuously supplying the plating liquid onto the substrate 2 (incubation process (block S306)). Thereafter, a plating film is grown by rotating the substrate 2 at a third rotational speed while continuously supplying the plating liquid onto the substrate 2 (plating film growing process (block S307)). Here, the first rotational speed is higher than the third rotational speed, and the third rotational speed is higher than the second rotational speed.
摘要:
A plating apparatus can perform a plating process on an entire surface of a substrate uniformly. A plating apparatus 20 includes a substrate holding/rotating device 110 configured to hold and rotate a substrate 2; a discharging device 21 configured to discharge a plating liquid toward the substrate 2 held on the substrate holding/rotating device 110; and a controller 160 configured to control the substrate holding/rotating device 110 and the discharging device 21. Further, the discharging device 21 includes a first nozzle 40 having a multiple number of discharge openings 41 arranged in a radial direction of the substrate 2 or having a discharge opening 42 extended in the radial direction of the substrate 2; and a second nozzle 45 having a discharge opening 46 configured to be positioned closer to a central portion of the substrate 2 than the discharge opening of the first nozzle 40.
摘要:
A liquid treatment apparatus of continuously performing a plating process on multiple substrates includes a temperature controlling container for accommodating a plating liquid; a temperature controller for controlling a temperature of the plating liquid in the temperature controlling container; a holding unit for holding the substrates one by one at a preset position; a nozzle having a supply hole through which the temperature-controlled plating liquid in the temperature controlling container is discharged to a processing surface of the substrate; a pushing unit for pushing the temperature-controlled plating liquid in the temperature controlling container toward the supply hole of the nozzle; and a supply control unit for controlling a timing when the plating liquid is pushed by the pushing unit. The temperature controller controls the temperature of the plating liquid in the temperature controlling container based on the timing when the plating liquid is pushed by the pushing unit.