摘要:
A misfire detecting system for an internal combustion engine, including an intake pipe internal pressure detecting device for detecting an internal pressure of an intake pipe of the internal combustion engine, and a misfire detection inhibiting device for inhibiting the detection of misfire when the internal pressure of the intake pipe detected by the intake pipe internal pressure detecting device is lower than an intake pipe internal pressure in a no-load condition.
摘要:
A combustion state-detecting system, for internal combustion engines, has a crank angle sensor. The crank angle sensor generates a crank angle signal with a predetermined period shorter than a firing period of the engine whenever the crankshaft rotates through a predetermined angle. A value of the rotational speed of the engine is detected whenever the crank angle signal is generated. A first average value of the detected engine rotational speed is calculated over a period of one rotation of the crankshaft, followed by calculating a second average value of the first average value over every firing period, to thereby calculate a rate of variation in the second average value over every firing period. The rate of variation is compared with a predetermined value, to determine whether or not the engine is in a degraded state of combustion.
摘要:
A combustion state-detecting system for an internal combustion engine calculates a first average speed by averaging the rotational speed of the engine over a time period corresponding to duration of one stroke of a cylinder, and a second average speed by averaging the rotational speed of the engine over a time period corresponding to duration of one cycle of all strokes of the cylinder. The system calculates a difference between the first average speed and the second average speed, and determines based on the difference whether or not the combustion state of the engine is abnormal.
摘要:
A combustion state-detecting system for internal combustion engines has a crank angle sensor which generates a crank angle signal with a predetermined period shorter than a firing period of the spark plug whenever the crankshaft rotates through a predetermined angle. A value of the rotational speed of the engine is detected whenever the crank angle signal is generated. A rate of variation in the detected value of the rotational speed of the engine is calculated over the firing period of the spark plug, and an average value thereof is then calculated. The calculated average value of the variation rate is compared with the calculated variation rate, and a cumulative value of a difference between the calculated variation rate average value and the calculated variation rate is calculated when the calculated variation rate is on the larger deceleration side of the engine rotational speed with respect to the calculated variation rate average value. The calculated difference cumulative value is compared with a predetermined value to determine whether or not the engine is in a degraded combustion state, based on the comparison result.
摘要:
An evaporative fuel-processing system includes a first control valve arranged in a charging passage connecting between a fuel tank and a canister for adsorbing evaporative fuel generated from the fuel tank, a second control valve arranged in a purging passage connecting between the canister and an intake passage of the engine, a third control valve arranged in an air inlet port of the canister, and a system internal pressure sensor for detecting pressure within the system. The system is checked for a leak by monitoring a value of the pressure detected by the sensor after the system is negatively pressurized by closing the third control valve and opening the second control valve. The sensor is provided at a location upstream of the first control valve, and the first control valve is closed to detect a value of the pressure or a change thereof. Abnormality determination is carried out based on the detected value of the pressure. Alternatively, all of the above valves are closed in the negatively-pressurized state of the system to detect a first amount of change in the pressure, and then the first control valve alone is opened to detect a second amount of change in the pressure. Abnormality determination can be carried out based on the first and second amounts of change in the pressure, or by comparing a value of the pressure detected when the first and second valves are closed after negative pressurization with a value of the pressure detected after the first control valve is opened.
摘要:
An evaporative fuel-processing system for an internal combustion engine includes an evaporative emission control system having a fuel tank, a canister, a passage extending from the canister to an intake passage of the engine, and a purge control valve arranged across the passage, and a pressurization device for pressurizing the interior of the evaporative emission control system. An ECU actuates the pressurization device to bring the evaporative emission control system into a positively pressurized state, after the purge control valve and an open-to-atmosphere control valve arranged across a passage connected to the canister are closed, and detects an amount of evaporative fuel generated in the fuel tank. The ECU determines whether or not a leakage occurs from the evaporative emission control system, based on a rate of variation in pressure within the evaporative emission control system, and a reference value which is determined based on the amount of evaporative fuel detected.
摘要:
A catalyst deterioration-determining system determines deterioration of a catalyst arranged in the exhaust passage of an internal combustion engine. An ECU is responsive to an output from an O.sub.2 sensor arranged upstream of the catalyst or outputs from O.sub.2 sensors arranged upstream and downstream of the catalyst for controlling the air-fuel ratio of a mixture supplied to the engine by means of an air-fuel ratio correction value (first air-fuel ratio control). When the engine is in a predetermined operating condition, the system effects changeover from the first air-fuel ratio control to a second air-fuel ratio control which is responsive to the output from the downstream O.sub.2 sensor for controlling the air-fuel ratio of the mixture by means of the air-fuel ratio correction value. After the changeover has been effected, a time period is measured which elapses from the time the second air-fuel ratio control causes a change in the air-fuel ratio correction value from a richer side to a leaner side or vice versa with respect to a stoichiometric air-fuel ratio to the time the output from the downstream O.sub.2 sensor is inverted from the richer side to the leaner side or vice versa with respect to the stoichiometric air-fuel ratio. It is determined that the catalyst is deteriorated, when the measured time period is shorter than the predetermined time period.
摘要:
A device according to an example of the invention comprises a section which accepts a write destination logical address and write target data from a processor, the write destination logical address indicating a write position to write the write target data into a composite memory which includes a first memory and a nonvolatile second memory, a section which determines a write destination physical address corresponding to the write destination logical address so that the number of times of access to the second memory is smaller than the number of times of access to the first memory, a section which stores, in a storage section, address conversion data associating the write destination logical address with the write destination physical address, and a section which writes the write target data into a position in the composite memory indicated by the write destination physical address.
摘要:
An air-fuel ratio control system for an internal combustion engine, which, at the resumption of air-fuel ratio feedback control, is capable of setting the initial value of an integral term of the feedback control to a value properly learned in preceding feedback control, thereby enabling improvement of control accuracy. To feedback-control the output value of an O2 sensor to a target value, a target air-fuel ratio is calculated. During the feedback control, when it is determined that a predetermined condition in which it is estimated that exhaust gas air-fuel ratio upstream of the catalyst is excellently reflected on an exhaust gas air-fuel ratio at a location midway or downstream of the catalyst is satisfied, an adaptive law input calculated immediately before interruption of the feedback control is updated and stored as the initial value of an integral term for the following execution of the feedback control.
摘要:
An air-fuel ratio control apparatus for an internal-combustion engine includes an air-fuel-ratio sensor, a control-input calculator, an air-fuel-ratio controller, and a gain calculator. The air-fuel-ratio sensor is disposed in an exhaust channel in the internal-combustion engine and is configured to detect an air-fuel ratio in exhaust gas. The control-input calculator is configured to calculate a control input in accordance with an output value of the air-fuel-ratio sensor. The air-fuel-ratio controller is configured to perform a feedback control using the control input such that the output value of the air-fuel-ratio sensor reaches a target value. The gain calculator is configured to calculate a gain in accordance with the output value when the output value is leaner than the target value. The gain is to be used in calculating the control input.