摘要:
An operation management program collects a query status table of a migration-source agent processing program and creates a server status table. The operation management program, based on the server status table, computes a migration cost for each query, and selects the query with the smallest migration cost as a migration query. Then, the operation management program migrates the selected query, using the optimum migration method.
摘要:
A method for manufacturing a SiC semiconductor device includes: preparing a SiC substrate having a (11-20)-orientation surface; forming a drift layer on the substrate; forming a base region in the drift layer; forming a first conductivity type region in the base region; forming a channel region on the base region to couple between the drift layer and the first conductivity type region; forming a gate insulating film on the channel region; forming a gate electrode on the gate insulating film; forming a first electrode to electrically connect to the first conductivity type region; and forming a second electrode on a backside of the substrate. The device controls current between the first and second electrodes by controlling the channel region. The forming the base region includes epitaxially forming a lower part of the base region on the drift layer.
摘要:
A SiC semiconductor device includes: a substrate; a drift layer on the substrate; a trench on the drift layer; a base region in the drift layer sandwiching the trench; a channel between the base region and the trench; a source region in the base region sandwiching the trench via the channel; a gate electrode in the trench via a gate insulation film; a source electrode coupled with the source region; a drain electrode on the substrate opposite to the drift layer; and a bottom layer under the trench. An edge portion of the bottom layer under a corner of a bottom of the trench is deeper than a center portion of the bottom layer under a center portion of the bottom of the trench.
摘要:
An SiC semiconductor device and a related manufacturing method are disclosed having a structure provided with a p+-type deep layer formed in a depth equal to or greater than that of a trench to cause a depletion layer between at a PN junction between the p+-type deep layer and an n−-type drift layer to extend into the n−-type drift layer in a remarkable length, making it difficult for a high voltage, resulting from an adverse affect arising from a drain voltage, to enter a gate oxide film. This results in a capability of minimizing an electric field concentration in the gate oxide film, i.e., an electric field concentration occurring at the gate oxide film at a bottom wall of the trench.
摘要:
A semiconductor device includes: a MOS transistor; a protection diode; and a semiconductor substrate. The MOS transistor and the protection diode are disposed in the semiconductor substrate. The drain of the MOS transistor is connected to the cathode of the protection diode. The source of the MOS transistor is connected to the anode of the protection diode. The MOS transistor has a withstand voltage defined as VT. The protection diode has a withstand voltage defined as VD, a parasitic resistance defined as RD, and a maximum current defined as IRmax. They satisfy a relationship of VT>VD+IRmax×RD. The maximum current of IRmax is equal to or larger than 45 Amperes.
摘要:
A semiconductor device includes: a semiconductor substrate having a first surface and a second surface, wherein the substrate has a first conductive type; a first trench extending from the first surface of the semiconductor substrate in a depth direction; and an epitaxial semiconductor layer having a second conductive type, wherein the epitaxial semiconductor layer is disposed in the first trench. The first trench includes an inner wall as an interface between the semiconductor substrate and the epitaxial semiconductor layer so that the interface provides a PN junction. The first trench has an aspect ratio equal to or larger than 1.
摘要:
The silicon carbide semiconductor device includes a trench formed from a surface of a drift layer of a first conductivity type formed on a substrate of the first conductivity type, and a deep layer of a second conductivity type located at a position in the drift layer beneath the bottom portion of the trench. The deep layer is formed at a certain distance from base regions of the second conductivity type formed on the drift layer so as to have a width wider than the width of the bottom portion of the trench, and surround both the corner portions of the bottom portion of the trench.
摘要:
A semiconductor device includes a base P region, a source N+ region, and a drain N+ region formed in a surface layer portion on a principal surface in an N− silicon layer. In the surface layer portion on the principal surface, an N well region is formed deeper than the drain N+ region in a region including the drain N+ region and is in contact with the base P region. A trench is formed so as to penetrate the base P region in a direction toward the drain N+ region from the source N+ region as a planar structure. A gate electrode is formed via a gate insulating film in the inside of the trench.
摘要:
A time series data processing device for processing time series data that is a sequence of data received from a system that is a processing target over time includes a time series data search processing unit that receives, for details of the time series data and occurrence time information, a time series data search condition including events of a plurality of the time series data and an interval condition that is a condition of time intervals of the events occurring, and changes the interval condition using an allowable time lag that is allowable time of a set time lag in a transmission source of the time series data to thereby reflect the set time lag in the time series data search condition; and a data monitoring unit that monitors the time series data received from the system that is the processing target, using the time series data search condition changed by the time series data search processing unit.
摘要:
A semiconductor device includes a silicon carbide semiconductor substrate, a transistor formed in a cell region of the semiconductor substrate, and a voltage-breakdown-resistant structure formed in a region which surrounds an outer periphery of the cell region. The semiconductor substrate includes a first conductivity type substrate, a first conductivity type drift layer on the first conductivity type substrate, a second conductivity type layer on the drift layer, and a first conductivity type layer on the second conductivity type layer. The voltage-breakdown-resistant structure includes a first recess which surrounds the outer periphery of the cell region and reaches the drift layer, a trench located at a side surface of the recess on an inner periphery of the recess, and a second conductivity type buried layer buried in the trench to provide the side surface of the first recess.