Abstract:
In one embodiment, a generator includes a rotor configured to rotate in cooperation with a stator to generate electrical power. An exciter of the generator includes at least one circuit board, a stationary exciter stator, and a control circuit. The circuit board is mechanically coupled to a rotor of the generator and includes at least one coil of an electrical conductor. The stationary exciter stator is configured to induce a current in the at least one coil of the at least one circuit board. The control circuit is configured to modify the current from the at least one coil and provide the modified current to a field of the generator.
Abstract:
An output of a generator may vary according to the speed of the engine, physical characteristics of the engine, or other factors. A profile for a generator that describes a periodic fluctuation in an operating characteristic for the generator is identified. A field current of an alternator associated with the generator is modified based on the profile for the generator in order to counter variations in the output of the generator.
Abstract:
A method of determining an operation of at least one of a plurality of generators in a power generation system. The method includes identifying a system parameter that is related to operation of the power generation system; and determining which of the plurality of generators to operate to minimize fuel consumption of the power generation system based on the system parameter. Other methods include identifying a system parameter that is related to operation of the power generation system; and determining which of the plurality of generators to operate by optimizing an operating variable of the power generation system based on the system parameter.
Abstract:
A set of generators are connected in parallel using a generator bus. At least one of the generators is associated with a controller. The controller detects an overload condition on the generator bus caused by a load and disconnects an initial generator from the generator bus in response to the overload condition. The initial generator continues to run during the overload condition after disconnecting from the generator bus but alternator excitation may be removed from the initial generator. The controller initiates starting one or more additional generator without alternator excitation. The controller also initiates connecting the initial generator and the one or more additional generators to the generator bus connected to the load. Alternator excitation is applied to the initial generator and the one or more additional generator so that adequate power may be applied to the load.
Abstract:
A dual compressor turbocharger includes two compressors. One compressor supplies fuel pressure, and one compressor supplies air pressure. The dual compressor turbocharger includes a turbine driven by exhaust of an engine and a shaft coupled to the turbine. The first compressor is mounted on the shaft and includes a first inlet coupled to an air supply and a first outlet coupled to an air intake of the engine. The second compressor is mounted on the shaft and includes a second inlet coupled to a fuel supply and a second outlet coupled to a fuel supply rail of the engine.
Abstract:
A power system may include a first generator configured to be connected to at least one other generator. Each generator may be configured to be connected to a bus. The bus may be connected to at least one load. The first generator includes a controller that operates the first generator and determines a need to regenerate a diesel particulate filter in the first generator. The controller communicates the need to regenerate the diesel particulate filter to the at least one other generator.
Abstract:
Some embodiments relate to an internal combustion engine that includes a combustion chamber and a rotating component. The internal combustion engine further includes a sensing system that detects an angular position of the rotating component. A controller calculates a ratio between air and fuel in the combustion chamber based on the detected position of the rotating component. As an example, the rotating component may be a crankshaft where the controller calculates a speed of the crankshaft and an acceleration of the crankshaft based on the detected position of the crankshaft.
Abstract:
Some embodiments relate to a controlled field alternator where the alternator is wired in a low wye configuration (coils wired in series or parallel). The first sensor measures the direct current flowing through the field within the alternator to detect an excitation level of a field within the alternator. As examples, the first sensor may measure field voltage, magnetic field intensity, magnetic flux density, current to the field of a rotating exciter, voltage to the field of a rotating exciter and the duty cycle of a pulse width modulated signal that controls an on-board rectifier for a permanent magnet exciter. Embodiments are also contemplated where the second sensor measures the RMS output voltage of the alternator to determine the output characteristic of the alternator.
Abstract:
An alternator includes an exciter field device generating an exciter magnetic field in a first air gap, an exciter armature device configured to rotate with respect to the exciter magnetic field and impart a first voltage in a first set of coils at the first air gap, a main stator device including a second set of coils, and a rotor field device configured to be energized by the first current in the first set of coils and generate a main magnetic field that imparts a second voltage on the main stator device at a second air gap. The main stator device and the exciter field device lie in on a common plane normal to an axis of rotation, and the exciter armature device is inwardly spaced from the exciter field device, main stator device, and the rotor field device.
Abstract:
A system and method for an interleaved inverter including a set of module circuits and an inverter controller. The module circuits include multiple switches. The inverter controller is configured to assign a first phase shift value to each of the module circuits during a normal mode of operation and assign a second phase shift value to at least one of the module circuits during a failure mode of operation. The second phase shift value is greater than the first phase shift value.