Abstract:
Disclosed is an apparatus for graphene wet transfer, which includes: a reservoir body having at least two reservoirs; a barrier structure located on the reservoir and having at least one separated space formed by barriers; and a substrate frame located below the barrier structure and having at least one substrate accommodation groove for accommodating a target substrate to which graphene is transferred. Here, each reservoir may be filled with a solution for a wet transfer process, and the graphene may be separately located in each separated space in a floating state in the solution.
Abstract:
A photoreceptor protein-based spectrophotometer may include a field-effect transistor and a photoreceptor protein on the field-effect transistor (FET), the photoreceptor protein exhibiting change in electrical properties by absorbing light and being activated. Since the spectrophotometer can convert the light absorbed by the photoreceptor protein to an electrical signal using the FET, it can mimic human vision by using human photoreceptor proteins. The spectrophotometer can measure the color, intensity, etc. of light of broad wavelength ranges as in human vision. Thus, the spectrophotometer can be applied to the development of artificial vision, etc.
Abstract:
Disclosed herein are a method and device for sensing avian influenza viruses, using terahertz electromagnetic waves. By the method, even a trace amount of avian influenza viruses in a liquid state can be accurately discriminated and sensed, with high sensitivity and selectivity, using a sensing chip that works in a terahertz electromagnetic wave band. Using the method, avian influenza viruses even at low concentrations can be accurately analyzed with high sensitivity and selectivity in which terahertz electromagnetic waves are irradiated onto avian influenza viruses through a sensing chip having a meta unit in which a pattern is formed to amplify a frequency corresponding to an absorption frequency of an avian influenza virus of interest.
Abstract:
A plasmonic all-optical switch includes a graphene layer, a first dielectric layer located on the graphene layer, a nano-antenna located on the first dielectric layer, and a second dielectric layer located on the nano-antenna. An incident beam is propagated by means of a surface plasmon wave generated at an interface between the graphene layer and the first dielectric layer. Further, localized surface plasmon resonance is selectively generated at an interface between the nano-antenna and the second dielectric layer by means of a pump beam incident to the nano-antenna to decrease an intensity of the incident beam. The plasmonic all-optical switch may operate at an ultrahigh speed just with a small light energy without any electric method, greatly reduce power consumption of an IT device by applying to an all-optical transistor or the like, and increase a processing rate.
Abstract:
The present invention relates to a mobile terminal capable of measuring an altitude and an altitude measurement method using the mobile terminal. The mobile terminal capable of measuring an altitude includes a barometric pressure information reception unit for receiving barometric pressure information, a barometric pressure correction unit for calculating a bias barometric pressure using the barometric pressure information received by the barometric pressure information reception unit, and a barometric pressure sensor for outputting a corrected barometric pressure to which the bias barometric pressure is applied.
Abstract:
Disclosed is a fluorescent probe specifically labeling mitochondria, which can exhibit high transmittance by virtue of light emission in the NIR range and in which nonspecific fluorescence absorption in biomolecules can be avoided, making it possible to observe fluorescence images in deep tissue.
Abstract:
Disclosed are an apparatus for estimating a pedestrian position based on pedestrian motion recognition, and a method therefor. The method for estimating the pedestrian position based on pedestrian motion recognition includes recognizing a specific motion of a plurality of motions of the pedestrian, performing a unique pedestrian dead-reckoning (PDR) technique corresponding to the recognized specific motion among unique PDR techniques for each of the plurality of motions of the pedestrian, and estimating the pedestrian's position by the performed unique PDR technique.
Abstract:
One aspect of the disclosed is to provide a method of manufacturing a nanoporous multilayer graphene membrane, including a first step of oxidizing a surface of a multilayer graphene membrane, a second step of reducing the oxidized surface of the multilayer graphene to carry out reductive etching such that oxidized carbon atoms on the surface are naturally and randomly dispersed, and a third step of repeatedly performing a series of the first and the second steps until nanopores penetrating the multilayer graphene are formed.
Abstract:
Provided is an extreme ultra-violet (EUV) beam generation apparatus using multi-gas cell modules in which a gas is prevented from directly flowing into a vacuum chamber by adding an auxiliary gas cell serving as a buffer chamber to a main gas cell, a diffusion rate of the gas is decreased, a high vacuum state is maintained, and a higher power EUV beam is continuously generated.
Abstract:
A method for diagnosing a biomarker using magnetic particles and quantum dots for quantitative analysis and a biomarker diagnosis kit are provided. The method for diagnosing a biomarker includes: ii) providing magnetic particles having surfaces to which a primary antibody capable of collecting a biomarker using a linker is fixed; ii) providing quantum dots having surfaces to which a secondary antibody capable of detecting the biomarker is fixed; iii) sandwich-targeting the biomarker by the magnetic particles and the quantum dots; iv) selectively separating quantum dots sandwich-targeting the biomarker among the quantum dots; and v) quantifying the concentration of the biomarker by measuring absorbance or intensity of fluorescence of separated quantum dots.