Abstract:
The present invention relates to SLAM (simultaneous localization and mapping) method and apparatus robust to a wireless environment change. A relative position of a moving node is estimated based on motion sensing of the moving node, the relative position of the moving node is corrected based on a comparison between a change pattern of at least one signal strength received over a plurality of time points and a signal strength distribution in a region in which the moving node is located, a route of the region is represented by using the relative position corrected as described above, and thereby, it is possible accurately estimate a position of the moving node and to create a map in which very accurate route information is recorded throughout the entire region at the same time, even if a wireless environment change such as signal interference between communication channels, expansion of an access point, and occurrence of a failure or an obstacle is made or a poor wireless environment such as lack of the number of access points occurs.
Abstract:
Provided are a saturable absorber including at least one material selected from a group of MXenes, and a Q-switching and mode-locked pulsed laser system using the same.
Abstract:
Provided is a high efficiency and high sensitivity particle capture type terahertz sensing system. The particle capture type terahertz sensing system includes a sensing substrate to capture particles, and a terahertz sensor to emit terahertz electromagnetic waves to the sensing substrate to sense the particles, wherein the sensing substrate includes a base substrate and a particle capture structure layer formed on the base substrate, the particle capture structure layer includes a plurality of slits for focusing the terahertz electromagnetic waves, the particle capture structure layer captures the particles in the plurality of slits using dielectrophoresis, and an area in which the terahertz electromagnetic waves converge to the plurality of slits matches an area in which the particles are captured in the plurality of slits through the dielectrophoresis.
Abstract:
The present invention relates to wireless localization method and apparatus of high accuracy, and measures strength of at least one signal that is transmitted from at least one fixed node, estimates a relative position of a moving node, generates a change pattern of at least one signal strength according to relative changes in positions of the moving node over a plurality of time points from at least one signal strength and the relative position of the moving node, and estimates an absolute position of the moving node, based on a comparison between the change pattern of the at least one signal strength and a map of a distribution pattern shape of signal strength in a region where the moving node is located. Accordingly, it is possible to accurately estimate a position of a moving node using a radio signal which not only accurately estimates the position of the moving node even in a change of wireless environment but also has almost no change in signal strength over a wide region.
Abstract:
A photoluminescence wavelength tunable material may include a composite including a graphene oxide layer and metal nanoparticles attached on the graphene oxide layer. By attaching the metal nanoparticles to the graphene oxide, the photoluminescence wavelength (i.e., the color of emitted light) of the graphene oxide may be tuned while maintaining the structure and physical properties of graphene oxide. The photoluminescence wavelength tunable material may be applied to an energy harvesting device such as a solar cell which exhibits high efficiency with less loss of light.
Abstract:
One embodiment of the present invention provides an optical imaging apparatus using a metamaterial including a metamaterial array sensor which includes a plurality of unit cells made of a metamaterial and is positioned adjacent to an observation object, an imaging beam providing unit which provides an imaging beam toward the metamaterial array sensor, a control beam providing unit which controls a control beam provided to the unit cell to block the imaging beam incident on the unit cell, and an imaging beam measuring unit which measures a unit cell imaging beam transmission amount passing through the unit cell by measuring an imaging beam transmission amount of the metamaterial array sensor when the imaging beam passes through the unit cell and an imaging beam transmission amount of the metamaterial array sensor when the control beam is focused on the unit cell to block the imaging beam incident on the unit cell.
Abstract:
An apparatus for sensing biomolecules includes: a storage in which a solution containing a target material is received; a sensor configured to sense the target material; and a flow controller connected between the storage and the sensor to supply the solution to the sensor, wherein the flow controller controls a solution flow to supply the solution containing the target material and the solution containing no target material in an alternating manner. According to the apparatus for sensing biomolecules, the sensing device always achieves a sensing offset, and consequently, long-term continuous measurement is enabled, leading to the maximized usage efficiency of the sensor, and the value of quantitative measurement can be obtained with high precision.
Abstract:
Disclosed is an apparatus for graphene wet transfer, which includes: a reservoir body having at least two reservoirs; a barrier structure located on the reservoir and having at least one separated space formed by barriers; and a substrate frame located below the barrier structure and having at least one substrate accommodation groove for accommodating a target substrate to which graphene is transferred. Here, each reservoir may be filled with a solution for a wet transfer process, and the graphene may be separately located in each separated space in a floating state in the solution.
Abstract:
A photoreceptor protein-based spectrophotometer may include a field-effect transistor and a photoreceptor protein on the field-effect transistor (FET), the photoreceptor protein exhibiting change in electrical properties by absorbing light and being activated. Since the spectrophotometer can convert the light absorbed by the photoreceptor protein to an electrical signal using the FET, it can mimic human vision by using human photoreceptor proteins. The spectrophotometer can measure the color, intensity, etc. of light of broad wavelength ranges as in human vision. Thus, the spectrophotometer can be applied to the development of artificial vision, etc.
Abstract:
A plasmonic all-optical switch includes a graphene layer, a first dielectric layer located on the graphene layer, a nano-antenna located on the first dielectric layer, and a second dielectric layer located on the nano-antenna. An incident beam is propagated by means of a surface plasmon wave generated at an interface between the graphene layer and the first dielectric layer. Further, localized surface plasmon resonance is selectively generated at an interface between the nano-antenna and the second dielectric layer by means of a pump beam incident to the nano-antenna to decrease an intensity of the incident beam. The plasmonic all-optical switch may operate at an ultrahigh speed just with a small light energy without any electric method, greatly reduce power consumption of an IT device by applying to an all-optical transistor or the like, and increase a processing rate.