Abstract:
Provided are a nanophosphor and a silica composite including the nanophosphor. The nanophosphor has a core/first shell/second shell structure or a core/first shell/second shell/third shell structure, wherein the core includes a Yb3+-doped fluoride-based nanoparticle, the first shell is an up-conversion shell including a Yb3+ and Tm3+-codoped fluoride-based crystalline composition, the second shell is a fluoride-based emission shell, and the third shell is an outermost crystalline shell.
Abstract:
A method of fabricating CIGS nanorod or nanowire according to one exemplary embodiment of the present disclosure comprises a deposition preparation step of placing a raw material including copper, indium, gallium and selenium and a substrate, and a deposition step of growing CIGS nanorod or nanowire on the substrate by maintaining an internal temperature of a reactor, in which carrier gas flows at a constant flow rate, at a temperature in the range of 850 to 1000° C. According to the method, Cu(In,Ga)Se2 nanorod or nanowire as a direct transition type semiconductor material having substantially uniform composition, high crystallinity and high light absorption ratio can be fabricated.
Abstract:
Provided is a high-durability coloring metal member. The high-durability coloring metal member includes a metal substrate, a dielectric layer provided on the metal substrate, and an oxynitride compound layer provided on the dielectric layer. The metal member is capable of expressing vivid and various colors with a color protection layer applied on the surface of the metal member.
Abstract:
Provided is a fluoride nanophosphor using, as cores, luminescent nanoparticles expressed by Chemical Formula 1. LiEr1-x-yLyF4:Tm3+x [Chemical Formula 1] (In Chemical Formula 1, x is a real number satisfying 0≤x≤0.3, y is a real number satisfying 0≤y≤0.8 and is selected within a range satisfying 0≤x+y≤0.9, and L is any one selected from the group consisting of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), ytterbium (Yb), lutetium (Lu), and a combination thereof.)
Abstract:
Provided is a catalyst for synthesizing hydrogen peroxide as represented by the following Chemical Formula 1: RhxAg(1-x), [Chemical Formula 1] where 0
Abstract:
The present invention relates to a solar cell having a wavelength converting layer formed of a polysilazane and a manufacturing method thereof to allow for low temperature sintering, to protect a wavelength converter from oxidation, degradation, and whitening, and thereby improve efficiency of the solar cell. The present invention provides for the solar cell including the wavelength converting layer which is formed by applying a coating solution containing a solvent, a polysilazane, and a wavelength converter onto a cell and an outer surface or inside of the cell, and then curing, and a manufacturing method of.
Abstract:
It is disclosed that a photo-electrode of a dye-sensitized solar cell comprising faceted anatase-type titania nanoparticles which adequate for fabricating a photo-electrode of a dye-sensitized solar cell which is efficient and longlasting and a fabrication method thereof. The titania nanoparticles can provide high photoelectric conversion efficiency of the solar cell with help of fast electron mobility due to its high crystallinity and can reduce process time required for adsorbing the dye molecules on the surface of the titania nanoparticles.By modifying surface characteristics of the titania nanoparticles, it is allowed for dye molecules to be easily adsorbed on the surface of the titania nanoparticles and the life span of the dye molecules adsorbed on it is expanded with help of reduced photo-degradation rate of them at service conditions.