摘要:
A buffer circuit for converting logic signals generated by apparatus implemented in a TTL technology to logic signals processed by apparatus implemented by the CMOS technology includes an input stage (10, 11, 12, 13, 17), a voltage-control (14, 15) stage for causing the buffer circuit to vary the input voltage level required to switch the state of the buffer circuit output signal, and a hysteresis stage (16) for causing the switching of the output signal level to be different for the rising and falling edges of the input signal. The voltage-control stage (14, 15) provides a improvement in the noise margin of both the VTTL(High) switching level and the VTTL(Low) switching level.
摘要:
Some embodiments are related to a mesh capacitor, which improves the SER FIT rate. In an embodiment, the capacitor is connected between an input and an output of a latch in a flip-flop, making the flip-flop harder to flip due to radiation (e.g., from neutrons and/or alpha particles). In some embodiments, the capacitor is built directly vertically on top of the flip-flop, saving chip layout areas.
摘要:
A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors includes a source, a drain, and a gate. A CA layer is electrically connected to at least one of the source or the drain of the first transistor. A CB layer is electrically connected to at least one of the gates of the transistors and the CA layer.
摘要:
A method of operating a memory circuit includes providing the memory circuit. The memory circuit includes a memory cell; a word line connected to the memory cell; a first local bit line and a second local bit line connected to the memory cell; and a first global bit line and a second global bit line coupled to the first and the second local bit lines, respectively. The method further includes starting an equalization to equalize voltages on the first and the second local bit lines; stopping the equalization; and after the step of starting the equalization and before the step of stopping the equalization, writing values from the first and the second global bit lines to the first and the second local bit lines.
摘要:
A method of operating a memory circuit includes providing the memory circuit. The memory circuit includes a memory cell; a word line connected to the memory cell; a first local bit line and a second local bit line connected to the memory cell; and a first global bit line and a second global bit line coupled to the first and the second local bit lines, respectively. The method further includes starting an equalization to equalize voltages on the first and the second local bit lines; stopping the equalization; and after the step of starting the equalization and before the step of stopping the equalization, writing values from the first and the second global bit lines to the first and the second local bit lines.
摘要:
A memory circuit includes a memory array, which further includes a plurality of memory cells arranged in rows and columns; a plurality of first bit-lines, each connected to a column of the memory array; and a plurality of write-assist latches, each connected to one of the plurality of first bit-lines. Each of the plurality of write-assist latches is configured to increase a voltage on a connecting one of the plurality of first bit-lines.
摘要:
An SRAM device include: a latch unit for retaining data; one or more pass gate transistors controlled by a word line for coupling the latch unit to a bit line and a complementary bit line; and a power saving module coupled to the latch unit for raising a source voltage of the latch unit in response to a control signal on the word line, thereby reducing a leakage current for the latch unit.
摘要:
A static random access memory cell utilizes four NMOS transistors and does not require load elements. The semiconductor memory cell device maintains a stable data hold by utilizing a sub-threshold voltage to charge the word line, the sub-threshold voltage being higher than the low voltage reference of the memory cell device and lower than the threshold voltage of the NMOS access transistors. The sub-threshold voltage is biased to the word line during non-active and non-charging operations of the memory cell. The loadless four-transistor NMOS SRAM memory cell of the present invention requires a significantly smaller silicon area than prior art loadless four-transistor CMOS SRAM memory cells.
摘要:
A static random access memory (SRAM) (10) operating in synchronism with an external clock is disclosed. The synchronous SRAM (10) includes a transparent address circuit (14) for decoding an external address in the set-up time prior to the rising edge of the external clock. A timing and control circuit (18) generates a word line enable (WLE) signal in synchronism with the rising edge of the external clock. When active, WLE activates a word line driver (34), when inactive, WLE equalizes the bit lines. WLE is applied to a first delay circuit (60) to generate a sense signal (SA). SA activates a sense circuit (46) and deactivates the WLE signal. Consecutive pipelined accesses are achieved such that, as an address is decoded, the bit lines are equalizing and the data from the previous address are propagating through a data I/O path (16).
摘要:
In a DRAM unit in which the substrate bias voltage is maintained within predetermined limits by a of voltage detectors and a charge pump, a third voltage detector is provided which detects a intermediate substrate bias voltage level that is within the voltage range identified by the pair of voltage detectors. When the third voltage level detects that the intermediate substrate bias voltage has been traversed, the charge pump is activated at a reduced level to drive the substrate bias voltage to recross the intermediate substrate bias voltage level. This technique permits the DRAM unit to operate in a stand-by mode at a lower power level, especially in a standby mode of operation, than when the substrate bias voltage is maintained only by the two voltage limit detectors and a single power level charge pump.