摘要:
A system for adjusting components in an automobile to compensate for impinging sunlight includes a solar data generator configured to generate solar data concerning a current location, heading, date and time of a vehicle. A solar data calculator is coupled to the solar data generator and configured to receive solar data and determine a vehicle component affected by impinging sunlight. A body control manager is coupled to the solar data calculator and operable to control the vehicle component to compensate for impinging sunlight.
摘要:
A method of controlling a HVAC system for a hybrid vehicle having a refrigerant compressor driven by an engine is disclosed. The method may comprise: determining a requested air conditioning operating point for a passenger compartment; estimating a time to reach the requested operating point; based on the previous steps, estimating a maximum allowed compressor off time; determining if the allowed compressor off time is greater than a minimum engine off time; if the allowed compressor off time is greater than the engine off time, determining if the vehicle is entering an allowable engine off mode; if so, commencing engine shut-off mode; if engine shut-off is anticipated, prior to commencing the shut-off mode, adjusting the HVAC system to maximize cooling of the passenger compartment with minimum energy usage; and if the engine shut-off is commenced, monitoring the HVAC system to determine when engine restart is needed to maintain comfort.
摘要:
An integrated receiver/dryer-accumulator-internal heat exchanger for use in a vehicle HVAC system and a method of operation are disclosed. The integrated receiver/dryer-accumulator-internal heat exchanger may comprise an accumulator portion having an accumulator inlet configured to be in fluid communication with an evaporator, and an accumulator outlet configured to be in fluid communication with a compressor; and a receiver/dryer portion mounted within the accumulator portion and having receiver/dryer inlet configured to be in fluid communication with a first portion of a condenser and a receiver/dryer outlet configured to be in fluid communication with a sub-cooler portion of the condenser. The integrated receiver/dryer-accumulator-internal heat exchanger allows for exchanging heat between the refrigerant in the accumulator portion and refrigerant in the receiver/dryer portion.
摘要:
A method of auxiliary heater pump control in a vehicle including a heater core and an auxiliary pump in a heater core branch of a vehicle coolant system is disclosed. The method comprises the steps of: determining if a power plant is on, the power plant being connected to the coolant system; calculating an estimated heating power required to meet HVAC system heating requirements that is a function of mass air flow, specific heat, and a change in temperature in a passenger compartment; determining if the calculated estimated heating power required is greater than a minimum required heating power that will be able to maintain thermal comfort in the passenger compartment of the vehicle; and if the calculated estimated heating power required is greater than the minimum required heating power and the power plant is not on, activating the auxiliary pump to pump a coolant through the heater core.
摘要:
A method of controlling a HVAC system for a hybrid vehicle having a refrigerant compressor driven by an engine is disclosed. The method may comprise: determining a requested air conditioning operating point for a passenger compartment; estimating a time to reach the requested operating point; based on the previous steps, estimating a maximum allowed compressor off time; determining if the allowed compressor off time is greater than a minimum engine off time; if the allowed compressor off time is greater than the engine off time, determining if the vehicle is entering an allowable engine off mode; if so, commencing engine shut-off mode; if engine shut-off is anticipated, prior to commencing the shut-off mode, adjusting the HVAC system to maximize cooling of the passenger compartment with minimum energy usage; and if the engine shut-off is commenced, monitoring the HVAC system to determine when engine restart is needed to maintain comfort.
摘要:
An evaporator core drying system in which air that is blown by a blower is concentrated into a narrow cross-sectional air stream of high speed purge air which passes progressively across the area of the evaporator core, per an appropriate blow algorithm, so as to effectively and efficiently dry the evaporator core. Preferably, the configurable barrier is composed of at least one roller door located between the blower and the evaporator core.
摘要:
An air separator for low flow rate coolant systems which removes air from the liquid coolant thereof. The air separator is a closed canister having a bottom wall, a top wall at a gravitationally high location with respect to the bottom wall, and a sidewall sealingly therebetween. A coolant inlet is at the sidewall, a pump outlet is at the bottom wall and a coolant reservoir outlet is at the top wall. The coolant reservoir outlet is connected to a coolant reservoir gravitationally elevated with respect to the canister. A much larger cross-sectional area per unit length of the canister relative to the piping results in a coolant dwell time in the canister that encourages coolant air bubbles to migrate toward the coolant reservoir.
摘要:
A method of operating a RESS thermal system in a vehicle having a coolant loop for directing a coolant through a RESS and a refrigerant loop configured to selectively cool the coolant flowing through a chiller in the coolant loop, including: determining a current target temperature range for the RESS based on a current vehicle operating mode and ambient temperature; determining a temperature of the RESS; determining if the temperature of the RESS needs to increase or decrease to be within the current target temperature range; if the determination is made that the temperature of the RESS needs to increase, determining if an active heating or a passive heating of the coolant will be employed, the active heating using a greater amount of energy over a shorter time period than the passive heating; and activating the determined active heating or passive heating of the coolant.
摘要:
A method of auxiliary heater pump control in a vehicle including a heater core and an auxiliary pump in a heater core branch of a vehicle coolant system is disclosed. The method comprises the steps of: determining if a power plant is on, the power plant being connected to the coolant system; calculating an estimated heating power required to meet HVAC system heating requirements that is a function of mass air flow, specific heat, and a change in temperature in a passenger compartment; determining if the calculated estimated heating power required is greater than a minimum required heating power that will be able to maintain thermal comfort in the passenger compartment of the vehicle; and if the calculated estimated heating power required is greater than the minimum required heating power and the power plant is not on, activating the auxiliary pump to pump a coolant through the heater core.
摘要:
An evaporator core drying system in which air that is blown by a blower is concentrated into a narrow cross-sectional air stream of high speed purge air which passes progressively across the area of the evaporator core, per an appropriate blow algorithm, so as to effectively and efficiently dry the evaporator core. Preferably, the configurable barrier is composed of at least one roller door located between the blower and the evaporator core.