Abstract:
A control assembly for a thermal management system for a high voltage battery of a plug-in electric vehicle may include a control valve and a control module. The control valve may be operable to control a flow of battery coolant to the high voltage battery from a refrigerant cooling circuit and from a cabin heater core cooling circuit. The control module may be configured to selectively operate the control valve to select a cooling mode, including a refrigerant only mode, a core mode, and a combined mode in which both the refrigerant cooling circuit and the cabin heater core cooling circuit provide cooling to the high voltage battery.
Abstract:
An air conditioner system for mobility is provided. The air conditioner system is configured to secure the air conditioning performance in cooling and heating conditioning and to prevent a battery from being deteriorated as the battery is prevented from being overcharged while the air conditioner system is driven when the battery is charged by the regenerative breaking while the charge amount of the battery is already high.
Abstract:
A vehicle battery diagnosis apparatus is provided that diagnoses a history of a usage state of a secondary battery of a vehicle and that presents a suppression measure against battery degradation. The vehicle battery diagnosis apparatus includes a storage unit and a diagnosis unit. The storage unit stores an alternative suppression measure for a factor responsible for degradation of the secondary battery. The diagnosis unit prohibits presentation of the alternative suppression measure as a suppression measure upon determining the alternative suppression measure fails to satisfy a prescribed presentation criterion.
Abstract:
A temperature control system includes a first air conditioner for changing a temperature of a heat medium, a second air conditioner for adjusting a temperature of air in a vehicle interior using the heat medium, a first supply member for supplying the heat medium from the first air conditioner to at least one of a battery stack and the second air conditioner, a second supply member for supplying the heat medium from the battery stack to the second air conditioner, a third supply member for supplying the heat medium from the second air conditioner to the electric equipment, and a fourth supply member for supplying the heat medium from the electric equipment to the first air conditioner.
Abstract:
In a first condition, the sum of discharging power from a first battery stack and discharging power from a second battery stack is limited in accordance with the sum of a limit value of discharging power from the first battery stack and a limit value of discharging power from the second battery stack. In a second condition, electric power of the battery stacks is limited in accordance with either the limit value of discharging power from the first battery stack or the limit value of discharging power from the second battery stack.
Abstract:
A power supply system for a railway vehicle is provided including a converter able to receive information from a transmission system between a power supply unit and air-conditioning units and to deduce from this information the demand for electrical power from each air-conditioning unit, this demand indicating the electrical power required by that air-conditioning unit to cool and/or dehumidify the air within a car in which it is installed, and the first electrical converter being equipped with a module for adjusting the amplitude and/or frequency of the three-phase voltage in a power supply network in response to the demands transmitted by each air-conditioning unit.
Abstract:
A power supply system for a railway vehicle is provided including a converter able to receive information from a transmission system between a power supply unit and air-conditioning units and to deduce from this information the demand for electrical power from each air-conditioning unit, this demand indicating the electrical power required by that air-conditioning unit to cool and/or dehumidify the air within a car in which it is installed, and the first electrical converter being equipped with a module for adjusting the amplitude and/or frequency of the three-phase voltage in a power supply network in response to the demands transmitted by each air-conditioning unit.
Abstract:
When a battery charger supplying external power to a vehicle air conditioning unit is detected as being disconnected by a connection sensor, a central processing unit stops operating the air conditioning unit upon elapse of a predetermined time after the detected disconnection. When a start signal is inputted from an ignition switch within the predetermined time, the central processing unit switches to a normal air conditioning mode to continue operating the air conditioning unit without interruption. The operation sequence is effective to prevent the energy stored in a battery as an internal power source from being unduly wasted, and to switch smoothly to the normal air conditioning mode.